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Abstract

This paper studies how experts with veto power—gatekeeping experts—influence agents 
through communication. Their expertise helps agents’ decisions, while veto power provides 
discipline. Gatekeepers face a dilemma: transparent communication can invite gaming, while 
opacity wastes expertise. How can gatekeeping experts guide behavior without being gamed? 
Many economic settings feature this tradeoff, including bank stress tests, environmental regu­
lations, and financial auditing. Using financial auditing as the primary setting, I show that 
strategic vagueness resolves this dilemma: by revealing just enough to prevent the manager 
from inflating the report, the auditor guides the manager while minimizing opportunities for 
manipulation. This theoretical lens provides a novel rationale for why auditors predominantly 
accept clients’ financial reports. Comparative statics reveals that greater gatekeeper indepen­
dence or expertise sometimes dampens communication. This paper shows how communication 
and veto power together make gatekeepers effective.
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1 Introduction

Gatekeepers play a central role in many economic settings. They are experts who have the option 
to withhold support or access to critical resources (Kraakman, 1986). Examples abound: a credit 
rating agency assesses whether a bond’s issuer is risky; external auditors sign off on firms’ financial 
statements; environmental regulators grant permits or certify compliance; and an academic journal 
editor decides whether a paper is to be published. Gatekeepers cannot dictate what the agent 
ought to do; they can only communicate what they believe the agent ought to do. However, 
communication is a fragile tool. If a rating agency reveals exactly how it assesses default risk, 
firms learn to game the standard instead of reducing risk. A completely opaque gatekeeper is no 
better. If an environmental regulator never explains what constitutes compliance, firms cannot 
improve their practices even when willing. A gatekeeper’s effectiveness hinges on what she says.

This paper studies a model of a gatekeeping expert—an expert who influences an agent 
through veto power and communication. I ask: to what extent, and how, can a gatekeeping 
expert be effective? To fix ideas, I use financial auditing as the primary setting. Auditors are 
a quintessential example of gatekeeping experts (Coates, 2007). Auditors use their expertise to 
monitor public firms’ accounting practices on behalf of shareholders. Their role is to certify 
whether the reporting is free from material misstatements (Ronen, 2010).

I model an auditor who decides whether to accept a firm manager’s financial report.1 The 
auditor wishes to ensure that the manager’s report complies with accounting standards. These 
standards are often ambiguous and require interpretation, especially for complex business transac­
tions (SEC, 2008). The auditor has expertise in interpreting and applying these complex standards 
(Bonner, 1990). The auditor’s preferred report is the treatment the auditor deems appropriate, given 
her expertise and all available information.

In my model, the firm’s manager seeks to maximize the reported value. For any particular 
transaction, once the audit has been conducted, the manager possesses no private information 
beyond what the auditor observes. I make these stark assumptions to delineate the gatekeeping 
expert’s communication problem. The framework can serve as a benchmark for further studies 
that incorporate richer institutional features.

The auditor accepts only reports that are close enough to the preferred report and rejects 
others. The auditor’s independence, which captures the cost she incurs from rejecting a report, 
determines the margin of error she tolerates. A more independent auditor tolerates smaller 
deviations from her preferred report.

1Throughout the text, the manager is referred to using male pronouns (“he”) and the auditor using female pronouns 
(“she”).
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$a=\Xl $


$b>-\pi ^R$


$\sigma $


   𝑎  <  Γ  (  𝑏  ) 


$a < \Gamma (b)$


     𝑋  _   ≤   min   {  𝑏  −  2    𝜋  𝑅   ,    Γ  𝐺   (  𝑏  )  } 


$\Xl \le \min \{b-2\pi ^R, \Gamma _G(b)\}$


$b-a>2\pi ^R$


$b-a\le 2\pi ^R$


   𝑎  <    Γ  𝐺   (  𝑏  ) 


$a<\Gamma _G(b)$


     𝑟  ∗   ≔  𝑟  (  [  𝑎  ,  𝑏  ]  )  >  𝑎  +    𝜋  𝑅  


$r^*\coloneq r([a,b]) > a+\pi ^R$


$r^*$


   𝑋  ∈  [  𝑎  ,    𝑟  ∗   −    𝜋  𝑅   ] 


$X\in [a, r^*-\pi ^R]$


     𝜎  ′  


$\sigma '$


$\sigma $


$[a, b]$


   [  𝑎  ,    𝑟  ∗   −    𝜋  𝑅   ] 


$[a, r^*-\pi ^R]$


   [    𝑟  ∗   −    𝜋  𝑅   ,  𝑏  ] 


$[r^*-\pi ^R, b]$


$\sigma '$


   [    𝑟  ∗   −    𝜋  𝑅   ,  𝑏  ] 


$[r^*-\pi ^R,b]$


$r^*$


$b$


$r^*$


   [    𝑟  ∗   −    𝜋  𝑅   ,  𝑏  ] 


$[r^* - \pi ^R, b]$


   𝑋  ∈  [    𝑟  ∗   −    𝜋  𝑅   ,  𝑏  ] 


$X\in [r^*-\pi ^R,b]$


$X\in [a, r^*-\pi ^R]$


$r^*$


$[a, b]$


$\sigma '$


$\sigma $


   (    𝑋  _   ,  −    𝜋  𝑅   ] 


$(\Xl ,-\pi ^R]$


$b\in (\Xl ,-\pi ^R]$


$a<b$


   𝑟  (  [  𝑎  ,  𝑏  ]  ) 


$r([a,b])$


   |  𝑋  −  0  |  ≥    𝜋  𝑅  


$|X-0|\ge \pi ^R$


   𝑋  ≤  𝑏 


$X\le b$


$a<b$


$a=\Xl $


     𝑋  _   ≥  −    𝜋  𝑅  


$\Xl \ge -\pi ^R$


   𝑋  <    𝜋  𝑅  


$X< \pi ^R$


     𝑋  _   <  −    𝜋  𝑅  


$\Xl < -\pi ^R$


   [    𝑋  _   ,  −    𝜋  𝑅   ] 


$[\Xl , -\pi ^R]$


$\Xl \ge -\pi ^R$


$[\Xl , -\pi ^R]$


   ℎ  (  𝑏  )  ≔    Γ  𝐺   (  𝑏  )  −  (  𝑏  −  2    𝜋  𝑅   ) 


$h(b)\coloneq \Gamma _G(b) - (b-2\pi ^R)$


      lim     𝑏  ↓  −    𝜋  𝑅       ℎ  (  𝑏  )  >  0 


$\lim _{b\downarrow -\pi ^R} h(b) > 0$


   ℎ 


$h$


$b$


$\Gamma _G(b)$


$a$


   𝑎  +    𝜋  𝑅   =  (  𝐹  (  𝑏  )  −  𝐹  (  𝑎  )  )  /  𝑓  (  𝑎  ) 


$a+\pi ^R = (F(b)-F(a))/f(a)$


   𝑎  ∈  (  −    𝜋  𝑅   ,  𝑏  ) 


$a\in (-\pi ^R,b)$


$\Gamma _G(b)$


   −    𝜋  𝑅  


$-\pi ^R$


   𝑏  ↓  −    𝜋  𝑅  


$b\downarrow -\pi ^R$


      lim     𝑏  ↓  −    𝜋  𝑅       ℎ  (  𝑏  )  =  2    𝜋  𝑅   >  0 


$\lim _{b\downarrow -\pi ^R} h(b) = 2\pi ^R>0$


$h$


   𝜕    Γ  𝐺   /  𝜕  𝑏  <  1 


$\partial \Gamma _G / \partial b < 1$


         𝜕    Γ  𝐺   (  𝑏  )     𝜕  𝑏    =      𝑓  (  𝑏  )  /  𝑓  (  𝑎  )     1  −    𝜕    𝜕  𝑎        𝐹  (  𝑏  )  −  𝐹  (  𝑎  )     𝑓  (  𝑎  )      =      𝑓  (  𝑏  )     2  𝑓  (  𝑎  )  +  (  𝐹  (  𝑏  )  −  𝐹  (  𝑎  )  )        𝑓  ′   (  𝑎  )     𝑓  (  𝑎  )      . 


\begin {equation}\label {eq:app_Gamma_G_derivative} \frac {\partial \Gamma _G(b)}{\partial b}=\frac {f(b)/f(a)}{1-\frac {\partial }{\partial a}\frac {F(b)-F(a)}{f(a)}}=\frac {f(b)}{2f(a)+(F(b)-F(a))\frac {f'(a)}{f(a)}}.\end {equation}


   𝑔  (  𝑥  )  ≔   log     𝑓  (  𝑥  ) 


$g(x)\coloneq \log f(x)$


$f$


     𝑔  ′   (  𝑥  )  ≤    𝑔  ′   (  𝑎  ) 


$g'(x)\le g'(a)$


   𝑥  ∈  [  𝑎  ,  𝑏  ] 


$x\in [a,b]$


       ^^01  𝑎  𝑏     𝑔  ′   (  𝑥  )  𝑓  (  𝑥  )  𝑑  𝑥  ≤  (  𝐹  (  𝑏  )  −  𝐹  (  𝑎  )  )    𝑔  ′   (  𝑎  )  . 


\begin {equation}\int _a^b g'(x)f(x)dx\le (F(b)-F(a))g'(a).\end {equation}


     𝑔  ′   (  𝑥  )  =    𝑓  ′   (  𝑥  )  /  𝑓  (  𝑥  ) 


$g'(x)=f'(x)/f(x)$


     𝑓  (  𝑏  )  ≤  𝑓  (  𝑎  )  +  (  𝐹  (  𝑏  )  −  𝐹  (  𝑎  )  )        𝑓  ′   (  𝑎  )     𝑓  (  𝑎  )    . 


\begin {equation}f(b)\le f(a) + (F(b)-F(a)) \frac {f'(a)}{f(a)}.\end {equation}


   𝑓  (  𝑎  )  >  0 


$f(a)>0$


$\partial \Gamma _G / \partial b < 1$


   𝔐  (  𝐷  )  ≔  {  𝑋  ∣    ℳ  ⁂   (  𝑋  )  ∋  𝐷  } 


$\mathfrak {M}(D)\coloneq \{X\mid \mathcal {M}^{⁂}(X)\ni D\}$


$D$


$X$


   𝔐  (  𝐷  )  =  𝐷 


$\mathfrak {M}(D) = D$


   𝑋  ∈  𝐷 


$X\in D$


   𝐷  ⊂  𝔐  (  𝐷  ) 


$D\subset \mathfrak {M}(D)$


   𝑋  ∉  𝐷 


$X\notin D$


$X$


$D$


   𝑋  ∉  𝔐  (  𝐷  ) 


$X\notin \mathfrak {M}(D)$


$D$


   𝑋  =   sup     𝔐  (  𝐷  )  =   sup     𝐷 


$X = \sup \mathfrak {M}(D)=\sup {D}$


   [  𝑎  ,  𝑏  ]  ∈    𝒟  ∗  


$[a,b]\in \mathcal {D^*}$


   𝑋  ∈  [  𝑎  ,  𝑏  ] 


$X\in [a,b]$


   𝐷  ∈    ℳ  ⁂   (  𝑋  ) 


$D \in \mathcal {M}^{⁂}(X)$


   𝐷  ≠  [  𝑎  ,  𝑏  ] 


$D\ne [a,b]$


$X$


   |  𝑟  (  [  𝑎  ,  𝑏  ]  )  −  𝑋  |  ≤    𝜋  𝑅  


$|r([a,b])-X|\le \pi ^R$


$D$


   𝐵  (  𝐷  ) 


$B(D)$


   𝑋  =   sup     𝐷 


$X=\sup D$


   𝑟  (  𝐷  )  =   sup     𝐷  +    𝜋  𝑅  


$r(D)=\sup D+\pi ^R$


$X$


          (21)      |  𝑟  (  𝐷  )  −  𝑋  |     =  |   sup     𝐷  +    𝜋  𝑅   −  𝑋  |            =   sup     𝐷  +    𝜋  𝑅   −  𝑋  ≥    𝜋  𝑅   ,    


\begin {align*}|r(D)-X| & =|\sup D+\pi ^{R}-X|\\ & =\sup D+\pi ^{R}-X \ge \pi ^{R},\end {align*}


   𝐷  ∋  𝑋 


$D\ni X$


   𝐷  ∈    𝒟  ∗  


$D\in \mathcal {D^*}$


$X\in D$


   ⟨  𝜎  ,  𝑟  ,  𝛼  ,  𝐵  ⟩ 


$\langle \sigma , r, \alpha , B \rangle $


     𝐷   self    ⊂  [    𝑋  _   ,    𝑋  ‾   ] 


$\self \subset [\Xl , \Xh ]$


   𝑋  ∈    𝐷   self   


$X \in \self $


     𝐷   self   


$\self $


   𝐵  (    𝐷   self    ) 


$B(\self )$


$X$


$X \in \self $


$X \in \self $


$\self $


$\self $


$\self $


$\self $


$\self $


$\sigma $


$\self $


$\sigma '$


$\sigma $


$\self $


$\self $


   𝑋  ∈    𝐷   self   


$X\in \self $


$\sigma $


$\sigma '$


   𝐵 


$B$


$\sigma $


$D=[a,b]$


     𝐷  +   ∪    𝐷  −  


$D^+ \cup D^-$


             𝐷  +      ≔  {  𝑋  ∈  𝐷  ∣  𝑟  (  𝐷  )  >  𝑋  +    𝜋  𝑅   ,    𝑋  >  −    𝜋  𝑅   }            𝐷  −      ≔  {  𝑋  ∈  𝐷  ∣  𝑟  (  𝐷  )  <  𝑋  −    𝜋  𝑅   ,    𝑋  >  −    𝜋  𝑅   }  .    


\begin {align*}D^{+} & \coloneq \{X\in D\mid r(D)>X+\pi ^{R},\,X>-\pi ^{R}\}\\ D^{-} & \coloneq \{X\in D\mid r(D)<X-\pi ^{R},\,X>-\pi ^{R}\}.\end {align*}


     𝐷  +  


$D^+$


     𝐷   self    ≔  (   inf       𝐷  +   ,  𝑏  ) 


$\self \coloneq (\inf {D^+}, b)$


   𝑏  >   inf       𝐷  +  


$b>\inf {D^+}$


    inf       𝐷  +   ≥  Γ  (  𝑏  ) 


$\inf D^+ \ge \Gamma (b)$


$'$


   |  𝑟  (    𝐷   self    )  −  𝑋  |  <    𝜋  𝑅  


$|r(\self ) - X|<\pi ^R$


   𝑋  ∈    𝐷  +  


$X\in D^+$


$-(\pi ^R)^2$


$\self $


     𝐷  −  


$D^-$


   𝐿  (  𝑏  ) 


$L(b)$


$X$


   [    𝑋  _   ,  𝑏  ] 


$[\Xl , b]$


   ℓ  (  𝑎  ,  𝑏  )  ≔  𝔼  [  (  𝑟  (  [  𝑎  ,  𝑏  ]  )  −  𝑋    )  2   ∣  𝑋  ∈  [  𝑎  ,  𝑏  ]  ] 


$\ell (a,b)\coloneq \E [(r([a,b]) - X)^2 \mid X\in [a,b]]$


$X\in [a,b]$


   𝜆  (  𝑏  ) 


$\lambda (b)$


   [  𝜆  (  𝑏  )  ,  𝑏  ] 


$[\lambda (b), b]$


$[\Xl , b]$


$\lambda (b)$


   [  𝜆  (  𝜆  (  𝑏  )  )  ,  𝜆  (  𝑏  )  ] 


$[\lambda (\lambda (b)), \lambda (b)]$


   {    𝜆    (  𝑖  )    (  𝑏  )  } 


$\{\lambda ^{(i)}(b)\}$


     𝜆    (  𝑖  +  1  )    (  𝑏  )  =  𝜆  (    𝜆    (  𝑖  )    (  𝑏  )  ) 


$\lambda ^{(i+1)}(b) = \lambda (\lambda ^{(i)}(b))$


$[\Xl , b]$


      lim     𝑏  →    𝑋  ‾       𝐿  (  𝑏  ) 


$\lim _{b \to \Xh } L(b)$


   [    𝑋  _   ,  𝑏  ] 


$[\Xl ,b]$


     𝐿  (  𝑏  )  =     min     𝑎  ∈  [  Γ  (  𝑏  )  ,  𝑏  ]      ℙ  (  𝑋  ≥  𝑎  ∣  𝑋  ≤  𝑏  )  ℓ  (  𝑎  ,  𝑏  )  +  ℙ  (  𝑋  ≤  𝑎  ∣  𝑋  ≤  𝑏  )  𝐿  (  𝑎  )  . 


\begin {equation}\label {eq:DP-problem} L(b) = \min _{a \in [\Gamma (b), b]} \prob (X \ge a \mid X\le b) \ell (a,b) + \prob (X \le a \mid X \le b) L(a).\end {equation}


   𝐿 


$L$


     𝑋  _   >  −    𝜋  𝑅  


$\Xl > -\pi ^R$


    OP  


$\mathrm {OP}$


        min   𝒟     ∑    𝑖  ∈  𝐼    ℙ  (  𝑋  ∈    𝐷  𝑖   )  𝔼  [  𝛼  (    𝑟  𝑖   ,  𝑋  )  (    𝑟  𝑖   −  𝑋    )  2   +  (  1  −  𝛼  (    𝑟  𝑖   ,  𝑋  )  )  (    𝜋  𝑅     )  2   ∣  𝑋  ∈    𝐷  𝑖   ]  . 


\begin {equation}\tag {$\mathrm {OP}$}\label {eq:optimal-partition-problem} \min _{\mathcal {D}} \sum _{i\in I} \prob (X\in D_i) \E [\alpha (r_i,X)(r_i - X)^2 + (1-\alpha (r_i,X)) (\pi ^R)^2 \mid X\in D_i].\end {equation}


   𝒫  (  [    𝑋  _   ,    𝑑  0   ]  ) 


$\mathscr {P}([\Xl ,d_0])$


   [    𝑋  _   ,    𝑑  0   ] 


$[\Xl ,d_0]$


   𝒟  ∈  𝒫  (  [    𝑋  _   ,    𝑑  0   ]  ) 


$\mathcal {D} \in \mathscr {P}([\Xl ,d_0])$


     𝒟  =    ⋃    𝑖  ≥  0      𝐷    −  𝑖    ,      𝐷    −  𝑖    ≔  [    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    ]  , 


\begin {equation}\mathcal {D} = \bigcup _{i\ge 0} D_{-i}, \quad D_{-i}\coloneq [d_{-i-1},d_{-i}],\end {equation}


   𝑖 


$i$


     𝑑  0   ≥    𝑑    −  1    ≥    𝑑    −  2    ≥  ⋯ 


$d_0\ge d_{-1}\ge d_{-2}\ge \cdots $


     𝐷    −  𝑖    =  [    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    ] 


$D_{-i}=[d_{-i-1},d_{-i}]$


       𝑑    −  𝑖  −  1    ∈  [  Γ  (    𝑑    −  𝑖    )  ,    𝑑    −  𝑖    )  , 


\begin {equation}\label {eq:acceptance-constraint} d_{-i-1}\in [\Gamma (d_{-i}),d_{-i}),\end {equation}


$\mathrm {OP}$


$[\Xl ,d_0]$


     𝑋  ‾   <  ∞ 


$\Xh <\infty $


     𝑑  0   =    𝑋  ‾  


$d_0=\Xh $


        inf     𝒟  ∈  𝒫  (  [    𝑋  _   ,    𝑑  0   ]  )      ∑    𝑖  ≥  0    ℙ  (  𝑋  ∈    𝐷    −  𝑖    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    )  . 


\begin {equation}\tag {$\mathrm {SP}$}\label {eq:SeqProb} \inf _{\mathcal {D} \in \mathscr {P}([\Xl ,d_0])} \sum _{i\ge 0} \prob (X\in D_{-i}\mid X\le d_0) \ell (d_{-i-1},d_{-i}).\end {equation}


     𝐿  (    𝑑  0   )  =     inf       𝑑    −  1    ∈  [  Γ  (    𝑑  0   )  ,    𝑑  0   ]      ℙ  (  𝑋  ≥    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  1    ,    𝑑  0   )  +  ℙ  (  𝑋  ≤    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  𝐿  (    𝑑    −  1    )  . 


\begin {equation}\tag {$\mathrm {BE}$}\label {eq:BellmanEq} L(d_0)=\inf _{d_{-1}\in [\Gamma (d_{0}),d_{0}]}\prob (X\ge d_{-1}\mid X\le d_{0})\ell (d_{-1},d_{0})+\prob (X\le d_{-1}\mid X\le d_{0})L(d_{-1}).\end {equation}


    SP  


$\mathrm {SP}$


    BE  


$\mathrm {BE}$


   Λ  (  𝒟  )  ≔    ∑    𝑖  ≥  0    ℙ  (  𝑋  ∈    𝐷    −  𝑖    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    ) 


$\Lambda (\mathcal {D}) \coloneq \sum _{i\ge 0} \prob (X\in D_{-i}\mid X\le d_0) \ell (d_{-i-1},d_{-i})$


          (     BE   )      Λ  (  𝒟  )     =  ℙ  (    𝑑    −  1    ≤  𝑋  ≤    𝑑  0   ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  1    ,    𝑑  0   )  +    ∑    𝑖  ≥  1    ℙ  (  𝑋  ∈    𝐷    −  𝑖    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    )            =  ℙ  (  𝑋  ≥    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  1    ,    𝑑  0   )  +      ℙ  (  𝑋  ≤    𝑑    −  1    )     ℙ  (  𝑋  ≤    𝑑  0   )      ∑    𝑖  ≥  1    ℙ  (  𝑋  ∈    𝐷    −  𝑖    ∣  𝑋  ≤    𝑑    −  1    )  ℓ  (    𝑑    −  𝑖  −  1    ,    𝑑    −  𝑖    )            =  ℙ  (  𝑋  ≥    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  1    ,    𝑑  0   )  +  ℙ  (  𝑋  ≤    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  Λ  (    𝑑    −  1    )  ,    


\begin {align*}\Lambda (\mathcal {D}) & =\prob (d_{-1}\le X\le d_{0}\mid X\le d_{0})\ell (d_{-1},d_{0})+\sum _{i\ge 1}\prob (X\in D_{-i}\mid X\le d_{0})\ell (d_{-i-1},d_{-i})\\ & =\prob (X\ge d_{-1}\mid X\le d_{0})\ell (d_{-1},d_{0})+\frac {\prob (X\le d_{-1})}{\prob (X\le d_{0})}\sum _{i\ge 1}\prob (X\in D_{-i}\mid X\le d_{-1})\ell (d_{-i-1},d_{-i})\\ & =\prob (X\ge d_{-1}\mid X\le d_{0})\ell (d_{-1},d_{0})+\prob (X\le d_{-1}\mid X\le d_{0})\Lambda (d_{-1}),\end {align*}


     𝑑  𝑖  


$d_i$


   Λ 


$\Lambda $


$\mathrm {BE}$


$\mathrm {SP}$


$\mathrm {BE}$


     𝒞  𝐵   (  [    𝑋  _   ,    𝑋  ‾   ]  ) 


$\mathcal {C}_B([\Xl ,\Xh ])$


   [    𝑋  _   ,    𝑋  ‾   ] 


$[\Xl ,\Xh ]$


   ‖  ⋅    ‖  ∞  


$\|\cdot \|_{\infty }$


   𝑇  ∶    𝒞  𝐵   (  [    𝑋  _   ,    𝑋  ‾   ]  )  →    𝒞  𝐵   (  [    𝑋  _   ,    𝑋  ‾   ]  ) 


$T:\mathcal {C}_B([\Xl ,\Xh ]) \to \mathcal {C}_B([\Xl ,\Xh ])$


     𝑇  𝐿  (    𝑑  0   )  ≔     min       𝑑    −  1    ∈  [  Γ  (    𝑑  0   )  ,    𝑑  0   ]      ℙ  (  𝑋  ≥    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝑑    −  1    ,    𝑑  0   )  +  ℙ  (  𝑋  ≤    𝑑    −  1    ∣  𝑋  ≤    𝑑  0   )  𝐿  (    𝑑    −  1    )  , 


\begin {equation}TL(d_0) \coloneq \min _{d_{-1}\in [\Gamma (d_{0}),d_{0}]}\prob (X\ge d_{-1}\mid X\le d_{0})\ell (d_{-1},d_{0})+\prob (X\le d_{-1}\mid X\le d_{0})L(d_{-1}),\end {equation}


   𝜆  (    𝑑  0   ) 


$\lambda (d_0)$


   𝑇 


$T$


   𝛽  ∈  (  0  ,  1  ) 


$\beta \in (0,1)$


   ℙ  (  𝑋  ≤  𝜆  (    𝑑  0   )  ∣  𝑋  ≤    𝑑  0   )  ≤  𝛽 


$\prob (X\le \lambda (d_0)\mid X\le d_0)\le \beta $


     𝑑  0   ∈  (    𝑋  _   ,    𝑋  ‾   ] 


$d_0\in (\Xl ,\Xh ]$


     𝑋  ‾   <  ∞ 


$\Xh < \infty $


     𝑋  ‾   =  ∞ 


$\Xh =\infty $


        lim       𝑑  0   →  ∞      ℙ  (  𝑋  ≤  𝜆  (    𝑑  0   )  ∣  𝑋  ≤    𝑑  0   )  =  1  . 


\begin {equation}\lim _{d_0\to \infty }\prob (X\le \lambda (d_0)\mid X\le d_0)=1.\end {equation}


   𝜀  >  0 


$\varepsilon >0$


     𝑑  ‾  


$\overline {d}$


   ℙ  (  𝑋  ≤  𝜆  (  𝑏  )  ∣  𝑋  ≤  𝑏  )  ≥  1  −  𝜀 


$\prob (X\le \lambda (b)\mid X\le b) \ge 1-\varepsilon $


   𝑏  ≥    𝑑  ‾  


$b\ge \overline {d}$


$\varepsilon >0$


$\overline {d}$


   𝑏  −  𝜆  (  𝑏  )  <    𝜋  𝑅  


$b-\lambda (b)<\pi ^R$


   𝜆  (  𝑏  )  >    𝑑  ‾  


$\lambda (b)>\overline {d}$


   𝑏  >    𝑑  ‾  


$b>\overline {d}$


$b>\overline {d}$


   𝑟  (  [  𝜆  (  𝑏  )  ,  𝑏  ]  )  =  𝜆  (  𝑏  )  +    𝜋  𝑅  


$r([\lambda (b),b]) = \lambda (b)+\pi ^R$


   𝑋  ∈  [  𝜆  (  𝑏  )  ,  𝑏  ] 


$X\in [\lambda (b),b]$


   ℓ  (  𝜆  (  𝑏  )  ,  𝑏  )  =  𝔼  [  (  𝜆  (  𝑏  )  +    𝜋  𝑅   −  𝑋    )  2   ∣  𝑋  ∈  [  𝜆  (  𝑏  )  ,  𝑏  ]  ] 


$\ell (\lambda (b), b) = \E [(\lambda (b)+\pi ^R-X)^2\mid X\in [\lambda (b), b]]$


$[\lambda (b), b]$


$\lambda (b)$


$T$


     𝐿  1   ,    𝐿  2   ∈    𝒞  𝐵   (  [    𝑋  _   ,    𝑋  ‾   ]  ) 


$L_1, L_2 \in \mathcal {C}_B([\Xl , \Xh ])$


     𝜆  1   (    𝑑  0   ) 


$\lambda _1(d_0)$


     𝜆  2   (    𝑑  0   ) 


$\lambda _2(d_0)$


   𝑘  ∈    1  ,  2  


$k \in {1, 2}$


     𝑘  ′   ≠  𝑘 


$k' \ne k$


     (  𝑇    𝐿  𝑘   )  (    𝑑  0   )  ≤  ℙ  (  𝑋  ≥    𝜆    𝑘  ′    (    𝑑  0   )  ∣  𝑋  ≤    𝑑  0   )  ℓ  (    𝜆    𝑘  ′    (    𝑑  0   )  ,    𝑑  0   )  +  ℙ  (  𝑋  ≤    𝜆    𝑘  ′    (    𝑑  0   )  ∣  𝑋  ≤    𝑑  0   )    𝐿  𝑘   (    𝜆    𝑘  ′    (    𝑑  0   )  )  . 


\begin {equation}(TL_k)(d_0) \le \prob (X\ge \lambda _{k'}(d_0)\mid X\le d_0)\ell (\lambda _{k'}(d_0), d_0) + \prob (X\le \lambda _{k'}(d_0)\mid X\le d_0)L_{k}(\lambda _{k'}(d_0)).\end {equation}


           |  𝑇    𝐿  1   −  𝑇    𝐿  2   |  (    𝑑  0   )     ≤     max     𝑘  ∈  {  1  ,  2  }      ℙ  (  𝑋  ≤    𝜆  𝑘   (    𝑑  0   )  ∣  𝑋  ≤    𝑑  0   )  ‖    𝐿  1   −    𝐿  2     ‖  ∞             ≤  𝛽  ‖    𝐿  1   −    𝐿  2     ‖  ∞   ,    


\begin {align}|TL_{1}-TL_{2}|(d_{0}) & \le \max _{k\in \{1,2\}}\prob (X\le \lambda _{k}(d_{0})\mid X\le d_{0})\|L_{1}-L_{2}\|_{\infty }\\ & \le \beta \|L_{1}-L_{2}\|_{\infty },\end {align}


     𝑑  0  


$d_0$


   ‖  𝑇    𝐿  1   −  𝑇    𝐿  2     ‖  ∞   ≤  𝛽  ‖    𝐿  1   −    𝐿  2     ‖  ∞  


$\|TL_{1}-TL_{2}\|_{\infty } \le \beta \|L_{1}-L_{2}\|_{\infty }$


$T$


$\Xl >0$


     ℓ  ∶    ℝ    +  +    ×  (  0  ,    𝑋  _   )  ∋  (  Δ  ,    𝜋  𝑅   )  ↦  (    𝜋  𝑅     )  2   −    𝜋  𝑅   Δ  +  (  Δ    )  2   /  3  ∈  ℝ  , 


\begin {equation}\ell :\R _{++} \times (0,\Xl ) \ni (\Delta ,\pi ^R)\mapsto (\pi ^R)^2 - \pi ^R \Delta + (\Delta )^2/3\in \R ,\end {equation}


   Δ 


$\Delta $


     𝑆  (    𝜋  𝑅   )  ≔  {  Δ  >  0  ∣  Δ  ≤  2    𝜋  𝑅   ,    Δ  =  (    𝑋  ‾   −    𝑋  _   )  /  𝑁     𝑁  ∈  ℕ  }  . 


\begin {equation}S(\pi ^R)\coloneq \{\Delta >0\mid \Delta \le 2\pi ^R,\,\Delta =(\Xh -\Xl )/N\text { for some }N\in \mathbb {N}\}.\end {equation}


        min     Δ  ∈  𝑆  (    𝜋  𝑅   )      ℓ  (  Δ  ;    𝜋  𝑅   )  . 


\begin {equation}\label {eq:app_uniform-uniform-partition-problem} \min _{\Delta \in S(\pi ^R)} \ell (\Delta ; \pi ^R).\end {equation}


$\pi ^R$


   ℓ 


$\ell $


   (  Δ  ,    𝜋  𝑅   ) 


$(\Delta , \pi ^R)$


         𝜕  2   ℓ     𝜕    𝜋  𝑅   𝜕  Δ    =  −  1 


$\frac {\partial ^2\ell }{\partial \pi ^{R}\partial \Delta }=-1$


   𝑆  (    𝜋  𝑅   ) 


$S(\pi ^R)$


$\pi ^R$


$\pi ^R$


     Δ   ideal    =  1  .  5    𝜋  𝑅  


$\Delta ^\mathrm {ideal}=1.5\pi ^R$


   [  (    𝑋  ‾   −    𝑋  _   )  /  𝑁  ,  (    𝑋  ‾   −    𝑋  _   )  /    𝑁  ′   ] 


$[(\Xh -\Xl )/N, (\Xh -\Xl )/N']$


   𝑁 


$N$


     𝑁  ′  


$N'$


   𝑏  ≤  −    𝜋  𝑅  


$b\le -\pi ^R$


   𝐴  (  𝑟  )  =  0 


$A(r)=0$


   𝑟  ≥  0 


$r\ge 0$


$\mathrm {Report}(a,b)$


$r=0$


$b>-\pi ^R$


$b-a>2\pi ^R$


$b-a\le 2\pi ^R$


$1$


   1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   ) 


$1-\ab {F}(r-\pi ^R)$


   𝑟  ≥  𝑎  +    𝜋  𝑅  


$r\ge a+\pi ^R$


      max     𝑟  ≥  0      𝑟  (  1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   )  ) 


$\max _{r\ge 0} r(1-\ab {F}(r-\pi ^R))$


      max   𝑟     𝑟  𝐴  (  𝑟  ) 


$\max _r rA(r)$


       𝑟  ∗   =    {            𝑎  +    𝜋  𝑅               𝑟  2  +   <  𝑎  +    𝜋  𝑅           𝑟  2  +               𝑟  2  +   ≥  𝑎  +    𝜋  𝑅   ,          


\begin {equation}r^{*}= \begin {cases} a+\pi ^R & \text {if }r_{2}^{+}<a+\pi ^{R}\\ r_{2}^{+} & \text {if }r_{2}^{+}\ge a+\pi ^{R}, \end {cases}\end {equation}


     𝑟  2  +  


$r_2^+$


   𝑟  =    ℎ  2   (  𝑟  ) 


$r=h_2(r)$


   𝑏  −  𝑎  >  2    𝜋  𝑅  


$b-a> 2\pi ^R$


        max     𝑟  ≥  0        𝑟        [      𝐹  (  𝑟  +    𝜋  𝑅   )  −  𝐹  (  𝑟  −    𝜋  𝑅   )     𝐹  (  𝑏  )  −  𝐹  (  𝑎  )    ]   ,       max     𝑟  ≥  0        𝑟        [      𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   )     𝐹  (  𝑏  )  −  𝐹  (  𝑎  )    ]   . 


\begin {equation}\max _{r\ge 0} \,r ~ \left [\frac {F(r+\pi ^R) - F(r-\pi ^R)}{F(b)-F(a)}\right ], \quad \max _{r\ge 0} \,r ~ \left [\frac {F(b) - F(r-\pi ^R)}{F(b)-F(a)}\right ].\end {equation}


$r$


$X$


$[a,b]$


     𝑟  =    ℎ  1   (  𝑟  )  ≔      𝐹  (  𝑟  +    𝜋  𝑅   )  −  𝐹  (  𝑟  −    𝜋  𝑅   )     𝑓  (  𝑟  −    𝜋  𝑅   )  −  𝑓  (  𝑟  +    𝜋  𝑅   )    ,    𝑟  =    ℎ  2   (  𝑟  )  ≔      𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   )     𝑓  (  𝑟  −    𝜋  𝑅   )    . 


\begin {equation}r = h_1(r)\coloneq \frac {F(r + \pi ^R) - F(r - \pi ^R)}{f(r - \pi ^R) - f(r + \pi ^R)}, \quad r = h_2(r)\coloneq \frac {F(b) - F(r - \pi ^R)}{f(r - \pi ^R)}.\end {equation}


     ℎ  2  


$h_2$


   𝑟  ≤  𝑏  +    𝜋  𝑅  


$r\le b+\pi ^R$


$h_2$


     𝑟  2  +   ∈  (  0  ,  𝑏  +    𝜋  𝑅   ) 


$r^+_2 \in (0, b + \pi ^R)$


     𝑟  2  +   =    ℎ  2   (    𝑟  2  +   ) 


$r^+_2 = h_2(r^+_2)$


     ℎ  1  


$h_1$


$f$


   𝑟  ↦  𝑓  (  𝑟  −    𝜋  𝑅   )  −  𝑓  (  𝑟  +    𝜋  𝑅   ) 


$r\mapsto f(r-\pi ^R)-f(r+\pi ^R)$


     𝑟  ˆ  


$\hat {r}$


   𝑤  (  𝑟  )  ≔  𝑔  (  𝑟  −    𝜋  𝑅   )  −  𝑔  (  𝑟  +    𝜋  𝑅   ) 


$w(r)\coloneq g(r-\pi ^R) - g(r+\pi ^R)$


   𝑔  (  𝑟  )  =   log     𝑓  (  𝑟  ) 


$g(r)=\log {f}(r)$


   𝑤 


$w$


   𝑓  (  𝑟  −    𝜋  𝑅   )  −  𝑓  (  𝑟  +    𝜋  𝑅   ) 


$f(r-\pi ^R)-f(r+\pi ^R)$


     𝑤  ′   (  𝑟  )  =    𝑔  ′   (  𝑟  −    𝜋  𝑅   )  −    𝑔  ′   (  𝑟  +    𝜋  𝑅   )  >  0 


$w'(r) = g'(r-\pi ^R) - g'(r+\pi ^R)>0$


$w$


     ℎ  1   (  𝑟  )  >  0 


$h_1(r)>0$


   𝑟  >    𝑟  ˆ  


$r>\hat {r}$


      lim     𝑟  ↓    𝑟  ˆ         ℎ  1   (  𝑟  )  =  ∞ 


$\lim _{r\downarrow \hat {r}} h_1(r) = \infty $


$h_1$


   𝑟  ≥    𝑟  ˆ  


$r\ge \hat {r}$


     𝑟  1  +   =    ℎ  1   (    𝑟  1  +   ) 


$r_1^+ = h_1(r_1^+)$


$\max _r rA(r)$


     𝑟  1  +   >    𝑟  2  +  


$r_1^+> r_2^+$


       𝑟  ∗   =    {            𝑎  +    𝜋  𝑅               𝑟  1  +   <  𝑎  +    𝜋  𝑅           𝑟  1  +               𝑟  1  +   ∈  [  𝑎  +    𝜋  𝑅   ,  𝑏  −    𝜋  𝑅   ]        𝑏  −    𝜋  𝑅               𝑟  2  +   ≤  𝑏  −    𝜋  𝑅   <    𝑟  1  +           𝑟  2  +               𝑟  2  +   >  𝑏  −    𝜋  𝑅   .          


\begin {equation}\label {eq:RP-solution-large} r^{*}= \begin {cases} a+\pi ^R & \text {if }r_{1}^{+}<a+\pi ^{R}\\ r_{1}^{+} & \text {if } r_1^+ \in [a+\pi ^R, b-\pi ^R]\\ b-\pi ^{R} & \text {if }r_{2}^{+}\le b-\pi ^{R}<r_{1}^{+}\\ r_{2}^{+} & \text {if }r_{2}^{+} > b-\pi ^{R}. \end {cases}\end {equation}


     𝑟  1  +   >    𝑟  2  +  


$r^+_1 > r_2^+$


   𝑟  ∈  (    𝑟  ˆ   ,  ∞  ) 


$r \in (\hat {r}, \infty )$


     ℎ  1   (  𝑟  )  >    ℎ  2   (  𝑟  ) 


$h_1(r) > h_2(r)$


       ℎ  1   (  𝑟  )  −    ℎ  2   (  𝑟  )  =        [  𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   )  ]   /  𝑓  (  𝑟  −    𝜋  𝑅   )  −    [  𝐹  (  𝑏  )  −  𝐹  (  𝑟  +    𝜋  𝑅   )  ]   /  𝑓  (  𝑟  +    𝜋  𝑅   )     (  𝑓  (  𝑟  −    𝜋  𝑅   )  −  𝑓  (  𝑟  +    𝜋  𝑅   )  )  /  𝑓  (  𝑟  +    𝜋  𝑅   )    . 


\begin {equation}h_1(r)-h_2(r)=\frac {\left [F(b)-F(r-\pi ^{R})\right ]/f(r-\pi ^{R})-\left [F(b)-F(r+\pi ^{R})\right ]/f(r+\pi ^{R})}{(f(r-\pi ^{R})-f(r+\pi ^{R}))/f(r+\pi ^{R})}.\end {equation}


   𝑟  >    𝑟  ˆ  


$r > \hat {r}$


   𝑥  ↦  (  𝐹  (  𝑏  )  −  𝐹  (  𝑥  )  )  /  𝑓  (  𝑥  ) 


$x\mapsto (F(b) - F(x))/f(x)$


   𝑥  ≤  𝑏 


$x\le b$


     ℎ  1   (    𝑟  1  +   )  =    𝑟  1  +   >    ℎ  2   (    𝑟  1  +   ) 


$h_1(r^+_1) = r^+_1 > h_2(r^+_1)$


   𝑟  −    ℎ  2   (  𝑟  ) 


$r-h_2(r)$


     𝑟  1  +   >    𝑟  2  +  


$r_1^+>r_2^+$


$f$


$h_2$


    max     𝑟  (  1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   )  ) 


$\max r(1-\ab {F}(r-\pi ^R))$


$r_2^+$


$h_1$


     𝑟  ‾  


$\overline {r}$


$f(r-\pi ^R)-f(r+\pi ^R)$


     ℎ  1   (  𝑟  ) 


$h_1(r)$


     𝑟  ‾  


$\overline {r}_1^{+}$


   (    𝑟  ‾   ,  ∞  ) 


$(\overline {r},\infty )$


       𝑟  1  +   ≔    {              𝑟  ‾               𝑟  ‾   <  ∞        ∞            .          


\begin {equation}r_{1}^{+}\coloneq \begin {cases} \overline {r}_1^{+} & \text {if }\overline {r}<\infty \\ \infty & \text {otherwise}. \end {cases}\end {equation}


$f$


     𝑟  1  +  


$r_1^+$


$A(r)$


$A(r)$


$r$


   [  𝑎  −    𝜋  𝑅   ,  𝑎  +    𝜋  𝑅   ) 


$[a-\pi ^R, a + \pi ^R)$


$\mathrm {Report}(a,b)$


   𝑎  +    𝜋  𝑅  


$a + \pi ^R$


$r\ge a+\pi ^R$


   𝐴  (  𝑟  )  =                   𝑎        𝐹  𝑏   (   min   {  𝑟  +    𝜋  𝑅   ,  𝑏  }  )  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   ) 


$A(r)=\ab {F}(\min \{r+\pi ^R,b\})-\ab {F}(r-\pi ^R)$


$A(r)$


   𝑟  =  𝑏  −    𝜋  𝑅  


$r=b-\pi ^R$


    max     𝑟  𝐴  (  𝑟  ) 


$\max rA(r)$


                    𝑎        𝐹  𝑏   (  𝑟  +    𝜋  𝑅   )  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   ) 


$\ab {F}(r+\pi ^R)-\ab {F}(r-\pi ^R)$


                    𝑎        𝐹  𝑏   (  𝑏  )  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   ) 


$\ab {F}(b)-\ab {F}(r-\pi ^R)$


$f$


$f$


$r^*$


    99   % 


$99\%$


$X$


$X$


   [  1  ,  9  ] 


$[1,9]$


$r$


$X$


$r$


   (  𝑟  −  𝑋    )  2  


$(r - X)^2$


$1$


$r$


$X$


   𝑋  =    𝑋  ˆ  


$X=\hat {X}$


   𝑋  =    𝑋  ˆ  


$X = \hat {X}$


$X$


$[a,b]$


$X\in [a,b]$


$X$


$X$


$X$


$r$


   [  𝑋  −  1  ,  𝑋  +  1  ] 


$[X-1, X+1]$


$X$


$1$


   9 


$9$


   [  0  ,  2  ] 


$[0,2]$


   [  8  ,   10   ] 


$[8,10]$


   𝑟  ≥   10  


$r\ge 10$


        max     𝑟  ≥  0        𝑟    ℙ  (  |  𝑟  −  𝑋  |  ≤  1  )  . 


\begin {equation}\max _{r\ge 0}\; r\, \prob (|r-X|\le 1).\end {equation}


$r_0 = 8$


   𝔼  [  𝑋  ]  =  5 


$\E [X]=5$


   𝑋  ∈  [  7  ,  9  ] 


$X\in [7,9]$


$r_0$


   𝑋  <  7 


$X<7$


                 6  8   ×  1    ^^01  7  9   (    𝑟  0   −  𝑥    )  2     1  8   𝑑  𝑥      6  8   ×  1   ⏟      +              6  8   ×  1    ^^01  7  9   (    𝑟  0   −  𝑥    )  2     1  8   𝑑  𝑥      ^^01  7  9   (    𝑟  0   −  𝑥    )  2     1  8   𝑑  𝑥   ⏟      =    5  6   ≈  0  .   83   . 


\begin {equation}\begin {bracealign} \underbrace {\frac {6}{8}\times 1}_{\text {rejection}} + \underbrace {\int _{7}^{9}(r_{0}-x)^{2}\frac {1}{8}dx}_{\text {acceptance}} =\frac {5}{6}\approx 0.83. \end {bracealign}\end {equation}


   𝑋  <  7 


$X < 7$


$X$


$X$


   [  𝑋  −  1  ,  𝑋  +  1  ] 


$[X - 1, X + 1]$


   𝑋  +  1 


$X+1$


$X$


$X$


$X$


$[5,9]$


   𝑋  ∈  [  1  ,  4  ] 


$X \in [1,4]$


$X$


   5  /  6 


$5/6$


$X$


$X$


$[a,b]$


$X+1$


$X$


   [  1  ,  2  ] 


$[1, 2]$


   [  2  ,  5  ] 


$[2, 5]$


   [  5  ,  9  ] 


$[5, 9]$


       𝑟  ∗   =    {            2            𝑋  ∈  [  1  ,  2  ]        4            𝑋  ∈  [  2  ,  5  ]        8            𝑋  ∈  [  5  ,  9  ]  .          


\begin {equation}r^* = \begin {cases} 2 & \text {if } X\in [1, 2]\\ 4 & \text {if } X\in [2, 5]\\ 8 & \text {if } X\in [5, 9]. \end {cases}\end {equation}


   𝑋  ∈  [  5  ,  9  ] 


$X\in [5,9]$


$r_0=8$


$X\in [5,9]$


   𝑋  <  5 


$X<5$


   𝑋  <  5 


$X < 5$


   7  /   12   ≈  0  .   58  


$7/12\approx 0.58$


    30   % 


$30\%$


$5/6$


$X$


$X$


   [  𝑎  ,  𝑏  ]  ⊂  [  1  ,  9  ] 


$[a,b]\subset [1,9]$


   |  𝑏  +  1  −  𝑋  |  <  1 


$|b+1 - X|< 1$


   𝑋  >  𝑏 


$X>b$


$[1,9]$


   𝑟  ∈  ℝ 


$r \in \mathbb {R}$


$X$


$[\Xl ,\Xh ]$


$X$


   𝜃  ∈  Θ 


$\theta \in \Theta $


$X$


$\theta $


   𝐹  (  ⋅    ;  𝜃  ) 


$F(\cdot \,;\theta )$


   {  𝐹  (  ⋅  ,  ;  𝜃  )    }    𝜃  ∈  Θ   


$\{F(\cdot ,;\theta )\}_{\theta \in \Theta }$


   𝑓  (  ⋅    ;  𝜃  ) 


$f(\cdot \,;\theta )$


$\theta $


$X$


$X$


$\theta $


$r$


$X$


$r$


     𝑢  (  𝑟  ,  𝑋  )  =  −  (  𝑟  −  𝑋    )  2   . 


\begin {equation}\label {eq:auditor-payoff} u(r,X) = -(r-X)^2.\end {equation}


$-(\pi ^R)^2$


     𝜋  𝑅   >  0 


$\pi ^R > 0$


$\pi ^R$


$\pi ^R$


   𝑃  (  𝑟  ) 


$P(r)$


$r$


$P(r)$


$r$


   𝑃 


$P$


$r$


     𝑟  𝑅  


$r^R$


$r$


     𝑣  (  𝑟  )  =    {            𝑃  (  𝑟  )            𝑟           0            .          


\begin {equation}v(r)=\begin {cases} P(r) & \text {if }r\text { is accepted}\\ 0 & \text {otherwise}. \end {cases}\end {equation}


   𝑃  (  𝑟  )  =  𝑟 


$P(r)=r$


$X$


$r$


   ℳ  (  𝑋  ) 


$\mathcal {M}(X)$


$X$


   𝐷  ∈  ℳ  (  𝑋  ) 


$D\in \mathcal {M}(X)$


$[\Xl ,\Xh ]$


   𝜎  ∶  [    𝑋  _   ,    𝑋  ‾   ]  →  ℳ  (  𝑋  ) 


$\sigma :[\Xl ,\Xh ]\to \mathcal {M}(X)$


$X$


       ℳ  †   (  𝑋  )  ≔  {  𝑋  ,  ∅  }  , 


\begin {equation}\label {eq:precise-message-def} \mathcal {M}^{†}(X) \coloneq \{X, \varnothing \},\end {equation}


   𝜎  (  𝑋  )  =  ∅ 


$\sigma (X)=\varnothing $


   𝑎  ≠  𝑏 


$a\ne b$


       ℳ  ⁂   (  𝑋  )  ≔  {  [  𝑎  ,  𝑏  ]  ⊂  [    𝑋  _   ,    𝑋  ‾   ]  ∣  𝑎  <  𝑏  ,  [  𝑎  ,  𝑏  ]  ∋  𝑋  }  . 


\begin {equation}\label {eq:vague-message-def} \mathcal {M}^{⁂}(X) \coloneq \{[a,b] \subset [\Xl ,\Xh ] \mid a< b, [a,b]\ni X \}.\end {equation}


     ℳ  ⁂  


$\mathcal {M}^{⁂}$


     ℳ  †   ∪    ℳ  ⁂  


$\mathcal {M}^{†} \cup \mathcal {M}^{⁂}$


$D$


   𝐵  ∶  ℳ  →  Δ  (  [    𝑋  _   ,    𝑋  ‾   ]  ) 


$B:\mathcal {M}\to \Delta ([\Xl ,\Xh ])$


   Δ  (  [    𝑋  _   ,    𝑋  ‾   ]  ) 


$\Delta ([\Xl ,\Xh ])$


$[\Xl ,\Xh ]$


   𝑟  ∶  Δ  (  [    𝑋  _   ,    𝑋  ‾   ]  )  →    ℝ  +  


$r: \Delta ([\Xl ,\Xh ])\to \mathbb {R}_+$


   𝑟  (  𝐷  ) 


$r(D)$


$B(D)$


$r$


   𝛼  ∶    ℝ  +   ×  [    𝑋  _   ,    𝑋  ‾   ]  ∋  (  𝑟  ,  𝑋  )  →  𝛼  (  𝑟  ,  𝑋  )  ∈  {  0  ,  1  } 


$\alpha :\mathbb {R}_+\times [\Xl ,\Xh ] \ni (r,X)\to \alpha (r,X)\in \{0, 1\}$


   𝛼  (  𝑟  ,  𝑋  )  =  1 


$\alpha (r,X)=1$


        max     𝑟  ≥  0      𝔼  [  𝑣  (  𝑟  )  ∣  𝐷  ]  =     max     𝑟  ≥  0      𝔼  [  𝑃  (  𝑟  )  𝛼  (  𝑟  ,  𝑋  )  ∣  𝑋  ∈  𝐷  ]  . 


\begin {equation}\label {eq:reporting-problem-stock-price} \max _{r\ge 0} \E [v(r) \mid D] = \max _{r\ge 0} \E [P(r) \alpha (r,X) \mid X\in D].\end {equation}


   𝑋  ∼  𝐹  (  ⋅  ;  𝜃  ) 


$X\sim F(\cdot ;\theta )$


$\theta $


$X$


$r$


   ⟨  𝜎  ,  𝛼  ,  𝑟  ,  𝐵  ⟩ 


$\langle \sigma , \alpha , r, B\rangle $


   𝜎  ,  𝛼 


$\sigma , \alpha $


$X$


$r$


$r$


$B$


$X$


   𝜎  (  𝑋  )  ∈  ℳ  (  𝑋  ) 


$\sigma (X)\in \mathcal {M}(X)$


     ℳ  †   (  𝑋  ) 


$\mathcal {M}^{†}(X)$


     ℳ  ⁂   (  𝑋  ) 


$\mathcal {M}^{⁂}(X)$


$\sigma $


$D\in \mathcal {M}(X)$


$r$


     𝛼  (  𝑟  ,  𝑋  )  =  1    ⟺    𝑢  (  𝑟  ,  𝑋  )  ≥  −  (    𝜋  𝑅     )  2   . 


\begin {equation}\alpha (r,X) = 1 \iff u(r,X) \ge -(\pi ^R)^2.\end {equation}


   |  𝑟  −  𝑋  |  ≤    𝜋  𝑅  


$|r-X|\le \pi ^R$


   𝑟  ∈  [  𝑋  −    𝜋  𝑅   ,  𝑋  +    𝜋  𝑅   ] 


$r \in [X - \pi ^R, X + \pi ^R]$


$r$


   |  𝑋  −  𝑟  |  ≤    𝜋  𝑅  


$|X-r|\le \pi ^R$


   |  𝑋  −  𝑟  |  <    𝜋  𝑅  


$|X-r|< \pi ^R$


$-(\pi ^R)^2$


    


$\textit {favorable}$


$r$


   |  𝑟  −  𝑋  |  =    𝜋  𝑅  


$|r-X|=\pi ^R$


$-(\pi ^R)^2$


$-(\pi ^R)^2$


     𝑋  ‾   −    𝑋  _   >  2    𝜋  𝑅  


$\Xh - \Xl > 2\pi ^R$


   𝑋  ∈  [  𝑎  ,  𝑏  ] 


$X \in [a,b]$


                    𝑎        𝐹  𝑏  


$\ab {F}$


$X$


$[a,b]$


   𝐴  (  𝑟  )  ≔                   𝑎        𝐹  𝑏   (  𝑟  +    𝜋  𝑅   )  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   ) 


$A(r) \coloneq \ab {F}(r + \pi ^R) - \ab {F}(r - \pi ^R)$


$r$


   [  𝑋  −    𝜋  𝑅   ,  𝑋  +    𝜋  𝑅   ] 


$[X - \pi ^R, X + \pi ^R]$


$X\in [a,b]$


     𝑟  ∗   ∈  [    𝑋  _   ,    𝑋  ‾   ] 


$r^* \in [\Xl ,\Xh ]$


$\mathrm {Report}(a,b)$


$[a,b]\subset [\Xl ,\Xh ]$


$\mathrm {Report}(a,b)$


     𝑟  ∗   ≥  𝑎  +    𝜋  𝑅  


$r^* \ge a + \pi ^R$


$b-a>2\pi ^R$


$r$


$r$


$b-a\le 2\pi ^R$


     𝐴  (  𝑟  )  =    {                             𝑎        𝐹  𝑏   (  𝑟  +    𝜋  𝑅   )          𝑟  ∈  [  𝑎  −    𝜋  𝑅   ,  𝑏  −    𝜋  𝑅   )        1          𝑟  ∈  [  𝑏  −    𝜋  𝑅   ,  𝑎  +    𝜋  𝑅   ]        1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   )          𝑟  ∈  (  𝑎  +    𝜋  𝑅   ,  𝑏  +    𝜋  𝑅   ]  .          


\begin {equation}\label {eq:acceptance-probability} A(r) =\begin {cases} \ab {F}(r+\pi ^{R}) & r\in [a-\pi ^{R},b-\pi ^{R})\\ 1 & r\in [b-\pi ^{R},a+\pi ^{R}]\\ 1-\ab {F}(r-\pi ^{R}) & r\in (a+\pi ^{R},b+\pi ^{R}]. \end {cases}\end {equation}


   𝑟  =  𝑎  −    𝜋  𝑅  


$r = a - \pi ^R$


$r$


$r$


$X$


$r$


   𝑏  −    𝜋  𝑅  


$b-\pi ^R$


   𝑟  =  𝑎  +    𝜋  𝑅  


$r = a + \pi ^R$


$A(r)$


$A(r)$


   𝑟  =  𝑎  +    𝜋  𝑅  


$r=a+\pi ^R$


   𝑟  𝐴  (  𝑟  ) 


$rA(r)$


$\mathrm {Report}(a,b)$


$r=a+\pi ^R$


     𝑟  +  


$r^+$


       𝑟  +   ≔       arg      max      𝑟  ≥  0        𝑟    (  1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   )  )  . 


\begin {equation}\label {eq:RP_risky_def} r^{+} \coloneq \argmax _{r\ge 0}\; r\,\big ( 1-\ab {F}(r-\pi ^R) \big ).\end {equation}


    max     𝑟  𝐴  (  𝑟  ) 


$\max r A(r)$


   (  𝑎  +    𝜋  𝑅   ,  𝑏  +    𝜋  𝑅   ] 


$(a+\pi ^R,b+\pi ^R]$


$1-\ab {F}(r-\pi ^R)$


$r\ge 0$


$r^+$


$\mathrm {Report}(a,b)$


       𝑟  ∗   =   max   {  𝑎  +    𝜋  𝑅   ,    𝑟  +   }  . 


\begin {equation}r^* = \max \{a+\pi ^R, r^{+}\}.\end {equation}


     𝑟  +   >  𝑎  +    𝜋  𝑅  


$r^+ > a+\pi ^R$


   𝑣  (    𝑟  +   )  =    𝑟  +   𝐴  (    𝑟  +   )  <    𝑟  +  


$v(r^+) = r^+ A(r^+)<r^+$


     𝑟  +   (  1  −                   𝑎        𝐹  𝑏   (    𝑟  +   −    𝜋  𝑅   )  )  ≥  (  𝑎  +    𝜋  𝑅   )  (  1  −                   𝑎        𝐹  𝑏   (  𝑎  )  )  =  𝑎  +    𝜋  𝑅  


$r^+ (1-\ab {F}(r^{+}-\pi ^R))\ge (a+\pi ^R)(1-\ab {F}(a))=a+\pi ^R$


     𝑟  +   <  𝑎  +    𝜋  𝑅  


$r^{+} < a + \pi ^R$


     𝑟  +  


$r^{+}$


          (6)      𝑟    (  1  −                   𝑎        𝐹  𝑏   (  𝑟  −    𝜋  𝑅   )  )     =  𝑟    (  1  −      𝐹  (  𝑟  −    𝜋  𝑅   )  −  𝐹  (  𝑎  )     𝐹  (  𝑏  )  −  𝐹  (  𝑎  )    )  ,            ∝  𝑟    (  𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   )  )  ,    


\begin {align*}r\,\big ( 1-\ab {F}(r-\pi ^{R}) \big ) & =r\,\bigg (1-\frac {F(r-\pi ^{R})-F(a)}{F(b)-F(a)}\bigg ),\\ & \propto r\,(F(b)-F(r-\pi ^{R})),\end {align*}


$F(b)-F(a)$


     𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   )  =  𝑟  𝑓  (  𝑟  −    𝜋  𝑅   )  . 


\begin {equation}\label {eq:risky-option-FOC} F(b) - F(r-\pi ^R) = r f(r - \pi ^R).\end {equation}


   𝑋  ∈  [  𝑟  −    𝜋  𝑅   ,  𝑏  ] 


$X\in [r-\pi ^R,b]$


   𝐹  (  𝑏  )  −  𝐹  (  𝑟  −    𝜋  𝑅   ) 


$F(b) - F(r-\pi ^R)$


   𝑋  =  𝑟  −    𝜋  𝑅  


$X=r-\pi ^R$


$b$


   𝑟  +    𝜋  𝑅   >  𝑏 


$r+\pi ^R>b$


     𝑟  ∗   =    𝑟  +  


$r^*=r^{+}$


$[a,b]$


$r^{+}$


$b$


$X$


$r^+$


$a$


$a + \pi ^R$


$a$


$b$


$b$


$a$


$a$


   𝑏  −  𝑎  ≡  Δ  ≤  2    𝜋  𝑅  


$b - a \equiv \Delta \le 2\pi ^R$


$[a, b]$


   [  𝑎  ,  𝑎  +  Δ  ] 


$[a, a+\Delta ]$


   (  𝑎  +    𝜋  𝑅   )  𝐴  (  𝑎  +    𝜋  𝑅   )  =  𝑎  +    𝜋  𝑅  


$(a+\pi ^R)A(a+\pi ^R) = a+\pi ^R$


$r$


     (  𝑟    𝐴  (  𝑟  )    )  ′     |      𝑟  =  𝑎  +    𝜋  𝑅     =  1  +  (  𝑎  +    𝜋  𝑅   )    𝐴  ′   , 


\begin {equation}\label {eq:RP-MBMC} (r\,A(r))'|_{\,r=a+\pi ^R} = 1 + (a+\pi ^R) A',\end {equation}


     𝐴  ′  


$A'$


   𝐴 


$A$


   𝑎  +    𝜋  𝑅  


$a+\pi ^R$


$r$


$a$


$a + \pi ^R$


$A'$


$A'$


$a + \pi ^R$


$A'$


$a + \pi ^R$


$a$


$X$


$A'$


$a$


$a$


$X$


$X$


   𝒰  [  𝑎  ,  𝑏  ] 


$\mathcal {U}[a,b]$


$\mathrm {Report}(a,b)$


       𝑟  ∗   ×  𝐴  (    𝑟  ∗   )  =    {            {                𝑏  +    𝜋  𝑅    2   ×      𝑏  +    𝜋  𝑅      2  (  𝑏  −  𝑎  )              𝑏  <  3    𝜋  𝑅         (  𝑏  −    𝜋  𝑅   )  ×      2    𝜋  𝑅      𝑏  −  𝑎              𝑏  ≥  3    𝜋  𝑅                     𝑏  −  𝑎  >  2    𝜋  𝑅   ,        {                𝑏  +    𝜋  𝑅    2   ×      𝑏  +    𝜋  𝑅      2  (  𝑏  −  𝑎  )              𝑎  <      𝑏  −    𝜋  𝑅    2         (  𝑎  +    𝜋  𝑅   )  ×  1            𝑎  ≥      𝑏  −    𝜋  𝑅    2                     𝑏  −  𝑎  ≤  2    𝜋  𝑅   .          


\begin {equation}\label {eq:uniform-RP-sol} r^{*}\times A(r^{*})= \begin {cases} \begin {cases} \frac {b+\pi ^{R}}{2}\times \frac {b+\pi ^{R}}{2(b-a)} & \text {if }b < 3\pi ^{R}\\ (b-\pi ^{R})\times \frac {2\pi ^{R}}{b-a} & \text {if }b\ge 3\pi ^{R} \end {cases} & \text {if }b-a>2\pi ^{R},\\ \begin {cases} \frac {b+\pi ^{R}}{2}\times \frac {b+\pi ^{R}}{2(b-a)} & \text {if }a<\frac {b-\pi ^{R}}{2}\\ (a+\pi ^{R})\times 1 & \text {if }a\ge \frac {b-\pi ^{R}}{2} \end {cases} & \text {if }b-a\le 2\pi ^{R}. \end {cases}\end {equation}


$b-a\le 2\pi ^R$


     𝑟  +   =  (  𝑏  +    𝜋  𝑅   )  /  2 


$r^+=(b+\pi ^R)/2$


   𝑎  <      𝑏  −    𝜋  𝑅    2  


$a<\frac {b-\pi ^{R}}{2}$


$b$


$a$


$b$


$a$


   ℳ  =    ℳ  †  


$\mathcal {M}=\mathcal {M}^{†}$


$X$


$[X - \pi ^R, X + \pi ^R]$


$-(\pi ^R)^2$


$\sigma $


     𝒳  0   ≔  {  𝑋  ∣  𝜎  (  𝑋  )  =  ∅  } 


$\nd \coloneq \{X\mid \sigma (X)=\varnothing \}$


$X$


$X\in \nd $


$\sigma $


$X$


   𝒟  =    ⋃    𝑖  ∈  𝐼      𝐷  𝑖  


$\mathcal {D}=\bigcup _{i\in I} D_i$


   𝐼 


$I$


     𝐷  𝑖   ≔  [    𝑑  𝑖   ,    𝑑    𝑖  +  1    ] 


$D_i\coloneq [d_i,d_{i+1}]$


   𝜎  (  [    𝑑  𝑖   ,    𝑑    𝑖  +  1    ]  )  =    𝐷  𝑖  


$\sigma ([d_i,d_{i+1}])=D_i$


     𝑟  𝑖   ≔  𝑟  (    𝐷  𝑖   ) 


$r_i\coloneq r(D_i)$


   𝑋  ∈    𝐷  𝑖  


$X\in D_i$


$X\in D_i$


     𝑟  𝑖  


$r_i$


    min   {  (    𝑟  𝑖   −  𝑋    )  2   ,  (    𝜋  𝑅     )  2   } 


$\min \{(r_i-X)^2, (\pi ^R)^2\}$


$X$


$r_i$


   𝛼  (    𝑟  𝑖   ,  𝑋  ) 


$\alpha (r_i,X)$


$\sigma $


   𝒟 


$\mathcal {D}$


$X$


$\mathrm {OP}$


$\mathrm {OP}$


   ℳ  =    ℳ  ⁂  


$\mathcal {M}=\mathcal {M}^{⁂}$


   𝐷  =  [  𝑎  ,  𝑏  ] 


$D = [a, b]$


   𝑏  −  𝑎  >  2    𝜋  𝑅  


$b - a > 2\pi ^R$


$D$


$r$


$[a, b]$


   𝑋  ∈  [  𝑎  ,  𝑟  −    𝜋  𝑅   ] 


$X\in [a,r-\pi ^R]$


$r$


$D$


$D$


   [  𝑎  ,  𝑟  −    𝜋  𝑅   ] 


$[a,r-\pi ^R]$


   [  𝑟  −    𝜋  𝑅   ,  𝑏  ] 


$[r-\pi ^R, b]$


$X\in [a,r-\pi ^R]$


$X\in [a,r-\pi ^R]$


$X\in [r-\pi ^R,b]$


$r$


$r=0$


$X$


$r=0$


   2    𝜋  𝑅  


$2\pi ^R$


$D=[a,b]$


   𝑎  ≥  (  𝑏  −    𝜋  𝑅   )  /  2 


$a \ge (b -\pi ^R)/2$


$b-a\le 2\pi ^R$


$b$


$a$


     Γ  𝐺   (  𝑏  )  <  𝑏 


$\Gamma _G(b) < b$


$a$


$D=[a,b]$


$b > -\pi ^R$


$a$


   𝑎  ≥    Γ  𝐺   (  𝑏  ) 


$a \ge \Gamma _G(b)$


     Γ  𝐺   (  𝑏  )  =  (  𝑏  −    𝜋  𝑅   )  /  2 


$\Gamma _G(b) = (b -\pi ^R)/2$


     Γ  𝐺   (  𝑏  )  ≥  𝑏  −  2    𝜋  𝑅  


$\Gamma _G(b)\ge b-2\pi ^R$


$2\pi ^R$


$X$


$b>-\pi ^R$


$b$


     𝑏  ˆ   ∈  (  −    𝜋  𝑅   ,    𝑋  ‾   ] 


$\hat {b}\in (-\pi ^R, \Xh ]$


     Γ  𝐺   (  𝑏  )  ≥  𝑏  −  2    𝜋  𝑅  


$\Gamma _G(b) \ge b-2\pi ^R$


   𝑏  ≤    𝑏  ˆ  


$b \le \hat {b}$


$X$


$b$


$X$


$\mathcal {D}^*$


$\mathrm {OP}'$


$\mathcal {D}^*$


$\mathrm {OP}'$


$\Xl \ge -\pi ^R$


$\mathrm {OP}'$


   Γ  (  𝑏  )  =   max   {  𝑏  −  2    𝜋  𝑅   ,  (  𝑏  −    𝜋  𝑅   )  /  2  } 


$\Gamma (b)=\max \{ b-2\pi ^R, (b-\pi ^R)/2 \}$


   𝔼  [  (    𝑟  𝑖   −  𝑋    )  2   ∣  𝑋  ∈    𝐷  𝑖   ]  =    ^^01    𝑑  𝑖     𝑑    𝑖  +  1     (    𝑟  𝑖   −  𝑥    )  2   /  (    𝑑    𝑖  +  1    −    𝑑  𝑖   )    𝑑  𝑥 


$\E [(r_i - X)^2 \mid X\in D_i]=\int _{d_i}^{d_{i+1}} (r_i - x)^2 /(d_{i+1}-d_i)\, dx$


$\mathrm {OP}'$


              min   𝒟        ∑        𝑑    𝑖  +  1    −    𝑑  𝑖        𝑋  ‾   −    𝑋  _         [  (    𝜋  𝑅     )  2   −    𝜋  𝑅   (    𝑑    𝑖  +  1    −    𝑑  𝑖   )  +    1  3   (    𝑑    𝑖  +  1    −    𝑑  𝑖     )  2   ]   ,               s  .  t  .          𝑑  𝑖   ≥   max   {    𝑑    𝑖  +  1    −  2    𝜋  𝑅   ,  (    𝑑    𝑖  +  1    −    𝜋  𝑅   )  /  2  }  ,  ∀  𝑖  ≥  0  .    
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I say that the manager games the auditor when the manager successfully chooses the 
highest report the auditor tolerates. Gaming is an information problem rooted in the auditor’s lack 
of direct control. The manager can game the auditor when he knows how much over-reporting 
the auditor will tolerate, because the auditor cannot dictate the manager’s report.

The auditor communicates her expertise before the manager proposes a report. I consider 
two modes of communication: precise and vague. With precise communication, the auditor tells the 
manager the exact value of the preferred report. With vague communication, she communicates 
a range of possible values. The auditor’s message must be truthful: it cannot contradict her 
knowledge about the preferred report, which is determined by relevant accounting standards. The 
auditor cannot commit ex-ante to how she will communicate or which reports she will accept.

Auditor communication is a critical part of the auditing process. During the early years of 
the Sarbanes-Oxley Act, critics argued that the Act was diminishing financial reporting quality, as 
auditors no longer provided sufficient guidance on complex accounting issues. The regulatory 
body responded by stressing that auditors are allowed to provide guidance (Goelzer, 2005). The 
episode highlights the importance of how expert auditors communicate with managers.2

In my model, the auditor’s communication shapes how the bargaining unfolds. Without 
communication, the manager’s report is sometimes unacceptable to the auditor. The auditor thus 
would like to communicate her expertise, especially when she anticipates that the manager’s report 
will deviate significantly from the preferred report.

But here is the dilemma: if the auditor communicates her expertise precisely, she will 
be gamed by the manager. This is because revealing the exact value of the preferred report 
also reveals the exact upper bound of what she is willing to accept. The manager then exploits 
this information. He proposes the highest possible value that the auditor is indifferent between 
accepting and rejecting. This is what I call the gatekeeping expert’s dilemma: the auditor would 
like to communicate her expertise, but the manager can game the auditor and render her control 
minimally effective.

The auditor does not always prefer complete silence, however, as the strategic value of 
silence depends on when she speaks. Consider a communication strategy where the auditor reveals 
the preferred report only for certain values and remains silent for others. Her silence then becomes 
informative. It signals to the manager that the preferred report falls outside the range where she 
would have spoken. From the auditor’s silence, the manager learns something about the preferred 

2Because auditor–client communications are confidential, direct evidence on how auditors communicate with 
managers is scarce. In this regard, Beattie et al. (2001) provide interesting case studies based on matched interviews 
with auditors and managers.
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report, but he still does not know the exact value. This strategic silence allows the auditor to 
prevent gaming while still steering the manager’s report closer to her preferred outcome. However, 
a crucial limitation exists: whenever the auditor reveals the preferred report, she is gamed and her 
payoff is minimized. The auditor’s ability to leverage silence is thus constrained by the cost she 
incurs when she speaks. I show that the auditor can sometimes, but not always, strictly improve 
her payoff by carefully choosing what not to say.

This motivates the question: can the auditor utilize vague language to communicate her 
expertise while minimizing the risk of gaming? The main result of this paper shows that she can, 
and characterizes how she does so. The maximal acceptance property defines an auditor-optimal 
equilibrium: across all equilibria, an auditor-optimal equilibrium maximizes the probability that 
the manager’s report is acceptable. For each message, the auditor steers the manager’s beliefs in 
the right direction while successfully eliciting reports close to her preferred one. Vague talk lets 
the auditor guide the manager without tipping her hand.

In practice, auditors accept the vast majority of reports they review. For example, in the 
U.S., over 99% of public firms’ financial statements receive an unqualified opinion—an auditor’s 
approval that the financial statements are accurate (Cipriano et al., 2017). My model suggests this 
high acceptance rate may, in part, reflect auditors’ use of vague language in their negotiations 
with managers.

Comparative statics highlight subtle interactions between the auditor’s communication 
strategy and the manager’s reporting incentives. I study the amount of information the auditor 
provides in equilibrium, defined as the reduction in the uncertainty about the preferred report.

First, I examine the effect of auditor independence. Without communication, an auditor 
with high independence would end up rejecting often, since she tolerates only a narrow margin 
of error. Therefore, one might conjecture that a high-independence auditor on average provides 
more information to ensure acceptable reports. Somewhat surprisingly, this is not necessarily 
true: when the manager’s incentive to inflate the report is strong, a more independent auditor 
may provide less information (vaguer communication).

Intuitively, vaguer messages give the manager more room to “gamble” on a higher report 
that may be rejected. For a fixed level of independence, this incentive is strongest for messages 
implying a low auditor-preferred report, where the expected value of acceptable reports is low. As 
a result, the auditor chooses to be vaguer over regions where her preferred reports are high than 
where they are low. Now consider what happens when the auditor becomes more independent. 
She must be more precise to ensure that the reports meet her tighter acceptance criteria; this effect 
is particularly pronounced for low realizations of preferred reports, where the manager’s incentive 
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to gamble is strong. This, in turn, lets the auditor be less precise when her preferred report is 
high. If the increase in vagueness at high realizations outweighs the increase in precision at low 
realizations, a more independent auditor will convey less information overall.

Second, I study how information asymmetry—measured by the prior variance of auditor-
preferred reports—affects communication. I interpret this variance as transaction complexity, or 
equivalently, the importance of auditor expertise. Some transactions are inherently more complex 
than others and require greater expertise for the auditor to determine her preferred report (e.g., 
the sale of a division with future contingencies as opposed to a simple spot sale of inventory). 
Greater transaction complexity would translate into greater ex-ante uncertainty about the auditor’s 
preferred report. I ask whether the auditor reveals more information relative to the increase in 
transaction complexity. The analysis again reveals a non-monotonic relationship. When the 
manager is already inclined to inflate the report, added complexity amplifies that tendency. The 
auditor must provide more information to rein in the manager (“strategic effect”). At the same 
time, greater complexity increases the probability that the auditor’s preferred report is high, for 
which the auditor is relatively vaguer than when the preferred report is low (“statistical effect”). 
The effect of increased complexity on communication depends on which force dominates.

The findings have policy implications for regulatory interventions of gatekeepers. A 
popular belief is that gatekeepers should remain independent. In financial auditing, auditor 
independence is a particularly important issue (Mautz and Sharaf, 1961). Since the Sarbanes-Oxley 
Act, regulators have intensified efforts to strengthen auditor independence. Yet my model indicates 
that greater auditor independence may lead to less information production. Similarly, expanding 
the scope for auditor judgment (i.e., increasing the prior variance over auditor-preferred reports) 
does not necessarily lead to more auditor guidance.3 My analysis underscores the importance of 
understanding the equilibrium effects of such policy interventions.

The model’s logic extends beyond auditing to other gatekeeping contexts. Consider, for 
instance, bank stress tests. The Federal Reserve conducts periodic tests to assess banks’ financial 
health. Banks make operational decisions, and the regulator uses its expertise to determine whether 
a bank passes the test. The regulator faces the gatekeeping expert’s dilemma: if it reveals too 
much about how it evaluates banks, banks may game the test rather than improve their financial 
health. This issue of “model secrecy” has drawn attention from both academics and practitioners 
(Leitner and Williams, 2023; Barr, 2025). My framework provides a lens to understand the Fed’s 
tradeoff and illustrates how the regulator can shape bank behavior by strategically choosing 

3For example, moving from bright-line rules to principles-based standards would expand the scope for auditor 
judgment.
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secrecy. In Appendix B, I elaborate on the stress test example and discuss other applications, 
including environmental regulation, capital budgeting, and patent examination.

1.1 Related Literature

The legal literature on gatekeepers focuses primarily on gatekeeper liability (Kraakman, 1986; 
Coffee, 2004; Wan, 2008; Tuch, 2012, 2017). As Kraakman (1986) insightfully points out, such 
liability becomes necessary only when alternative enforcement mechanisms are unavailable and 
when gatekeepers can effectively utilize their expertise and prevent agents from engaging in 
undesirable behavior. However, the effectiveness of gatekeepers is often unclear, precisely because 
they do not control agents directly. My study contributes to this literature by analyzing how
gatekeepers can be effective through communication.

By modeling auditors as gatekeeping experts and focusing on their problem, my paper 
contributes to the theoretical literature on auditing. A major strand of the auditing literature 
studies the role of auditors in principal-agent settings, where auditors verify the agent’s report 
(“Costly State Verification” models; see, e.g., Townsend, 1979; Gale and Hellwig, 1985; Border and 
Sobel, 1987; Mookherjee and Png, 1989; Mittendorf, 2010).4 In contrast, my paper focuses on the 
auditor’s expertise and her communication problem.5 My paper moves beyond the traditional view 
of the auditor as an information verifier and sheds new light on auditor–manager negotiations.

Despite the importance of auditor–manager negotiations (Gibbins et al., 2001; Nelson et al., 
2002; Brown and Wright, 2008; Hatfield et al., 2022; Lennox et al., 2025), its theoretical treatments 
remain sparse. Antle and Nalebuff (1991) is a notable exception. They model the audit as a 
negotiation where the client has superior information about the firm’s performance. I complement 
their research by considering the case in which the auditor has superior information and focusing 
on the information-sharing aspect of the negotiation.

I focus on communication strategies that are truthful, in line with Milgrom (1981).6 The 

4Another strand of the literature analyzes how auditors conduct audits strategically in otherwise decision-theoretic 
frameworks that are complemented by strategic managers (“Strategic Auditing” models; see, e.g., Fellingham and 
Newman, 1985; Shibano, 1990; Matsumura and Tucker, 1992; Patterson and Smith, 2007). Other work in auditing 
has analyzed auditor switching (Dye, 1991; Li et al., 2023), auditor independence (DeAngelo, 1981; Antle, 1984; Arya 
and Glover, 2014), auditors’ legal liability (Dye, 1993; Laux and Newman, 2010), the interaction between audit and 
non-audit services (Friedman and Mahieux, 2021), auditor–client matching (Li et al., 2025; Achim et al., 2025). Ye 
(2023) surveys the theoretical literature on auditing.

5See Caplan and Kirschenheiter (2004) and Gao and Zhang (2019) for models that also incorporate auditor expertise, 
albeit within different frameworks. These papers do not address the auditor’s communication problem.

6Crawford and Sobel (1982) analyze non-truthful communication (“cheap talk”) and show that a biased sender 
coarsens information to achieve credible communication. This result resembles the gatekeeper’s optimal vague 
communication in my model. However, the underlying economic forces differ fundamentally, beyond the distinction 
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distinction between precise and vague communication follows the work of Hagenbach and Koessler 
(2017). In my model, the auditor’s vague communication strategy is a partitional communication 
strategy. Glode et al. (2018) and Ali et al. (2023b) also study truthful partitional disclosure in a 
monopolistic screening setting. These papers derive buyer-optimal communication strategies. 
My setting features different economic forces: the sender (gatekeeper) would like to induce a 
report that is close to the preferred report, while the buyer in Glode et al. (2018) and Ali et al. 
(2023b) would like to induce a price as low as possible. As a consequence, for example, precise 
communication and silence can strictly improve the gatekeeper’s payoff, while the buyer’s payoff 
under such a strategy never improves in their models.

Communication and veto power are also featured in delegation models (Melumad and 
Shibano, 1991; Alonso and Matouschek, 2008). In these models, an uninformed principal sets a 
decision rule—a stronger form of ex-ante veto power—to influence an informed agent. In contrast, 
in my model, an informed gatekeeper uses ex-post veto power and communication to influence an 
uninformed agent.

My paper is also related to the literature on veto bargaining (Romer and Rosenthal, 1978). 
Recent papers study veto bargaining under incomplete information (Ali et al., 2023a; Kim et al., 
2024). I contribute to this literature by showing how gatekeepers (vetoers) can influence the 
bargaining outcome through strategic communication.

2 An Example

I illustrate the main idea of the paper via a simple example, deferring formal development to later 
sections.

A manager of a firm and an auditor are in the final, critical negotiation phase of the 
audit. They need to resolve how to record the fair value of an illiquid asset. As an expert, the 
auditor privately learns an appropriate accounting treatment among those permitted by accounting 
standards. She does so by reviewing relevant information, utilizing available resources such as 
valuation specialists, and relying on her expert judgment (Ahn et al., 2020). Denote by 𝑋 the 
auditor’s preferred fair value of the asset. The manager lacks expertise and is uncertain about 
the fair value the auditor deems appropriate. The manager’s prior belief about 𝑋 is uniformly 
distributed over the interval [1, 9]. The manager aims to maximize the reported fair value in the 

between truthful and cheap talk. In their model, the sender wants to convey as much information as possible but 
lacks credibility. In my model, the gatekeeping expert does not want to reveal too much information, as doing so 
would risk being gamed.
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financial statements, denoted by 𝑟. As a gatekeeping expert, the auditor seeks to ensure that the 
manager’s report closely aligns with her preferred fair value 𝑋. If the auditor accepts the manager’s 
report 𝑟, she incurs a quadratic loss (𝑟 − 𝑋)2. If she rejects the report, she incurs a fixed loss of 1, 
while the manager receives a normalized payoff of zero. Consequently, the auditor accepts any 
report 𝑟 within a margin of one from her preferred value 𝑋.

The focus is the auditor’s communication problem: how can the auditor with veto power 
effectively guide the manager’s report through communication? I structure the analysis around two 
types of communication strategies: precise and vague. If the auditor uses precise communication, 
she either remains silent or simply tells the manager what the fair value is. In contrast, a vague
message conveys only that the fair value lies within a specified range of values. Importantly, the 
auditor’s message must be truthful. If she states that 𝑋 = 𝑋̂ (precise communication), then it must 
be that 𝑋 = 𝑋̂. If she states that 𝑋 is in the range [𝑎, 𝑏] (vague communication), then it must be 
that 𝑋 ∈ [𝑎, 𝑏]. One justification for truthfulness is regulatory scrutiny. If the auditor knowingly 
provides false information to her client, she risks punishment from regulators.7

2.1 Precise Communication

Suppose the auditor communicates her expertise using only precise language or silence.8 The 
auditor considers how the manager will respond to her communication or the lack thereof.

Absent additional information from the auditor, the manager selects a report 𝑟 to maximize 
the expected accepted value. The auditor accepts any report within the interval [𝑋 − 1, 𝑋 + 1]. 
As 𝑋 varies from 1 to 9, the acceptance region moves from [0, 2] to [8, 10]. The manager faces a 
risk-return tradeoff: higher reports are better if accepted, but are more likely to be rejected. Any 
report 𝑟 ≥ 10 will be rejected with probability one. The optimal report solves

max
𝑟≥0

𝑟 ℙ(|𝑟 − 𝑋 | ≤ 1).

The solution, 𝑟0 = 8, is inflated compared to the expected value 𝔼[𝑋] = 5. When 𝑋 ∈ [7, 9], the 
auditor accepts the report 𝑟0, but when 𝑋 < 7, she rejects it. The auditor’s ex-ante expected loss is 

7In the U.S., the Public Company Accounting Oversight Board (PCAOB) enforces auditing standards and sanctions 
auditors for violations.

8By precise communication, I mean that she reveals 𝑋 precisely if  she chooses to communicate about 𝑋. She may 
choose to remain silent—in which case, as we will see below, her silence indirectly and vaguely conveys information 
about 𝑋.
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≈ 0.83.

When 𝑋 < 7, the auditor anticipates that the manager’s report will deviate significantly 
from her preferred fair value. Thus the auditor would like to communicate this to the manager and 
have him adjust the report accordingly. Would the auditor benefit from precisely communicating 
the value of 𝑋? By revealing her knowledge, the auditor can ensure the manager does not “gamble” 
by proposing a report likely to be rejected. However, in doing so, the auditor loses her information 
advantage. The manager not only learns that the auditor-preferred fair value is 𝑋, but also that the 
auditor will accept any report in the interval [𝑋 − 1, 𝑋 + 1]. Thus informed, the manager inflates 
the report to 𝑋 + 1. The auditor’s payoff is now minimized, as she is indifferent between accepting 
and rejecting the report—the auditor is gamed by the manager. This is the gatekeeping expert’s 
dilemma.

Under precise communication, the auditor may adopt a strategy of remaining silent when 
𝑋 lies in some range and revealing it precisely otherwise. When she reveals her preferred fair 
value, the auditor accepts being gamed; when she remains silent, however, she shifts the manager’s 
beliefs without revealing the exact value of 𝑋. For example, consider the auditor’s strategy of 
revealing 𝑋 only when it is in [5, 9]. Silence then implies that 𝑋 ∈ [1, 4]. The manager is still 
unsure of 𝑋, but his report is less likely to deviate substantially from it. However, as it turns out, the 
auditor does not benefit from such a strategy under the uniform distribution (Proposition 1). An 
auditor-optimal equilibrium outcome under precise communication is attained by always staying 
silent, which guarantees the auditor a loss of 5/6.

Can the auditor do better than this? Next I explore whether the auditor can utilize vague 
language to communicate her expertise without being gamed by the manager.

2.2 Vague Communication

Instead of revealing the exact fair value 𝑋, the auditor can communicate a range of possible fair 
values. Such vague language potentially helps the auditor, because a vague message can guide the 
manager without revealing the exact upper bound of what the auditor is willing to accept. When 
the auditor says that 𝑋 is in the interval [𝑎, 𝑏], the manager learns something—his report becomes 
better aligned with the auditor’s preferred fair value—but he still does not know everything—he 
cannot propose the auditor’s maximal acceptable fair value 𝑋 + 1.

To be specific, consider the following vague communication strategy: the auditor reveals 
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whether 𝑋 is in [1, 2], [2, 5], or [5, 9]. For each of these messages, the manager solves a new 
reporting problem. The optimal such report is

𝑟∗ =
⎧⎪
⎨⎪
⎩

2 if 𝑋 ∈ [1, 2]

4 if 𝑋 ∈ [2, 5]

8 if 𝑋 ∈ [5, 9].

Figure 1 (left panel) illustrates this. When the manager learns 𝑋 ∈ [5, 9], the manager’s report 
remains unchanged from the no-communication report 𝑟0 = 8. Thus, conditional on 𝑋 ∈ [5, 9], 
the auditor’s expected payoff is identical to the no-communication scenario. In the region 𝑋 < 5, 
the vague message makes a difference. When 𝑋 < 5, without communication, the manager’s 
report would always be rejected. With vague communication, the manager tailors his report 
to the auditor’s message, so it is sometimes acceptable to the auditor. As a result, overall, the 
vague communication strategy strictly improves the auditor’s expected payoff (and the manager’s 
too).9,10

The vague communication strategy described above is just one among many ways to 
convey the auditor’s expertise. What strategy, then, maximizes the auditor’s equilibrium payoff? 
The answer is notably simple: the auditor achieves optimal payoff by equally partitioning the 
support [1, 9]. The right panel of Figure 1 shows this optimal vague communication. The shaded 
area indicates that the manager’s report is always within the acceptance region. The auditor 
successfully elicits her favorable reports without inefficiently rejecting reports. The outcome 
stands in stark contrast to the precise communication case; with precise communication, in order 
to ensure acceptable reports, the auditor must reveal all of her expertise and obtains the minimal 
payoff.

Maximal acceptance is not limited to this particular example, but rather a defining property 
of an auditor-optimal equilibrium (Lemma 2). Roughly speaking, when the auditor’s communica­
tion results in an unacceptable report, the auditor could always convey just enough information to 
make the manager’s report acceptable. To make this precise, I now turn to a formal description of 
the model.

9The new expected loss is 7/12 ≈ 0.58, which is 30% smaller than the no-communication expected loss of 5/6.
10The constructed strategy indeed constitutes an equilibrium: the auditor does not have an incentive to deviate 

from this communication strategy. Suppose the manager holds a “wishful” off-path belief: he believes that 𝑋 is 
the highest possible value within the off-path message. The auditor with realization 𝑋 benefits from an off-path 
message [𝑎, 𝑏] ⊂ [1, 9] only if |𝑏 + 1 − 𝑋 | < 1. However, this inequality requires 𝑋 > 𝑏, which violates the truthful 
communication requirement. Thus the manager’s wishful off-path belief together with the vague communication 
strategy constitutes an equilibrium.
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Figure 1: Vague Communication via Partition

Note: The figure illustrates the auditor’s vague communication strategies in the uniform distribution case, 𝑋 ∼ 𝒰[1, 9]. 
For each value of 𝑋 in the vertical axis, the range of acceptable reports in the horizontal axis is represented by the 
shaded region. The left panel corresponds to the communication strategy with messages [1, 2], [2, 5], and [5, 9]; the 
right panel to the uniform-partition strategy. For each 𝑋, the corresponding report on the horizontal axis is at the 
intersection of the horizontal line through 𝑋 and the thick vertical line. For example, in the left panel, when 𝑋 = 4, 
the manager reports 𝑟∗ = 4. The vertical dashed line at 𝑟0 = 8 indicates the manager’s report under no information.

3 A Model of Gatekeeping Expert

3.1 Setup

A firm’s manager and an auditor bargain over how to treat a transaction in the firm’s financial 
statements. The manager proposes a report 𝑟 ∈ ℝ to the auditor, who decides whether to accept the 
report. The auditor privately learns the preferred report for the transaction. The preferred report 
is represented by a random variable 𝑋 with support [𝑋, 𝑋], where the endpoints may be infinite. 
The distribution of 𝑋 is determined by the parameter 𝜃 ∈ Θ, which I interpret as transaction/issue 
characteristics. The cumulative distribution function of 𝑋 given 𝜃 is 𝐹(⋅ ; 𝜃). Each distribution in the 
family {𝐹 (⋅, ; 𝜃)}𝜃∈Θ admits a continuously differentiable, log-concave density function 𝑓 (⋅ ; 𝜃). This 
assumption is satisfied by many common distributions, including the uniform, normal, exponential, 
and logistic distributions (Bagnoli and Bergstrom, 2005).
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The transaction characteristics 𝜃, and thus the distribution of 𝑋, are common knowledge.11 
I omit 𝜃 from the notation until the comparative statics analysis.

3.2 Payoffs

The Auditor’s Payoff

The auditor would like to ensure that the manager’s report 𝑟 in the financial statements is close to 
the preferred value 𝑋. Specifically, if the auditor accepts a report 𝑟, then her payoff is

𝑢(𝑟 , 𝑋 ) = −(𝑟 − 𝑋)2. (1)

The quadratic specification allows for a sharp characterization of equilibrium behavior, and it 
transparently demonstrates the economic forces in the model.

If the auditor rejects the report, then she obtains an exogenous, commonly-known outside 
option payoff of −(𝜋𝑅)2 with 𝜋𝑅 > 0. I refer to 𝜋𝑅 as the auditor’s independence: a larger 𝜋𝑅

corresponds to less independence, as the auditor has more to lose from rejecting a report.

The Manager’s Payoff

Let 𝑃(𝑟) denote the payoff the manager obtains when the report 𝑟 is accepted. I take a reduced-form 
approach and assume only that 𝑃(𝑟) is increasing in 𝑟, without specifying the exact mechanism 
underlying 𝑃. Examples include equity valuation, borrowing terms, bonus triggers, and product-
market perceptions.12 If the auditor rejects 𝑟, the reported number becomes a default value 𝑟𝑅, 
which I normalize to zero.

Under this assumption, the manager’s choice problem is to push 𝑟 upward subject to 
acceptance. The manager’s payoff is therefore

𝑣(𝑟) = {
𝑃(𝑟) if 𝑟 is accepted

0 otherwise.

I adopt the linear normalization 𝑃(𝑟) = 𝑟 in what follows. This preserves the strategic forces, 
while simplifying the manager’s reporting problem and allowing us to focus on the auditor’s 

11In the online supplementary material (Appendix D), I relax the assumption that the manager does not have any 
private information about 𝑋.

12The manager’s incentives to boost the reported earnings are extensively documented in the accounting literature 
(Dechow et al., 2010).
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communication strategy.

3.3 Communication

After observing 𝑋 but before the manager proposes the report 𝑟, the auditor can communicate her 
expertise. Let ℳ(𝑋) be the set of messages available to the auditor with realization 𝑋. Each message 
𝐷 ∈ ℳ(𝑋) is a (Borel) subset of [𝑋, 𝑋]. The auditor’s strategy is a mapping 𝜎 ∶ [𝑋, 𝑋] → ℳ(𝑋).

The auditor’s communication is truthful: her message must be consistent with 𝑋. As in the 
example, I consider precise and vague communication. The auditor’s message space under precise 
communication is given by

ℳ†(𝑋) ≔ {𝑋 , ∅}, (2)

where 𝜎(𝑋) = ∅ denotes silence. 
Under vague communication, the set of available messages is given by13

ℳ⁂(𝑋) ≔ {[𝑎, 𝑏] ⊂ [𝑋, 𝑋] ∣ 𝑎 < 𝑏, [𝑎, 𝑏] ∋ 𝑋}. (3)

3.4 Strategies, Timeline, and Equilibrium Concept

The Reporting Problem with the Gatekeeper

After observing the auditor’s message 𝐷, the manager updates his belief according to a mapping 
𝐵 ∶ ℳ → Δ([𝑋, 𝑋]), where Δ([𝑋, 𝑋]) is the set of probability measures on [𝑋, 𝑋]. The manager’s 
reporting strategy is a mapping 𝑟 ∶ Δ([𝑋, 𝑋]) → ℝ+. I slightly abuse notation and write 𝑟(𝐷) to 
denote the manager’s report when the posterior belief is 𝐵(𝐷).

The auditor either accepts or rejects the report 𝑟. Denote by 𝛼 ∶ ℝ+ × [𝑋, 𝑋] ∋ (𝑟 , 𝑋 ) →
𝛼(𝑟 , 𝑋) ∈ {0, 1} the auditor’s pure-strategy acceptance decision, where 𝛼(𝑟 , 𝑋 ) = 1 denotes accep­
tance. Therefore, the restriction to pure strategies is without loss of generality.

The manager solves the following reporting problem:

max
𝑟≥0

𝔼[𝑣(𝑟) ∣ 𝐷] = max
𝑟≥0

𝔼[𝑃(𝑟)𝛼(𝑟 , 𝑋 ) ∣ 𝑋 ∈ 𝐷]. (4)

He chooses the report while accounting for the auditor’s power to veto any report she finds 

13I rule out precise messages from the vague message space, as 𝑎 ≠ 𝑏 in (3). This is purely for the sake of exposition 
and without loss; the auditor’s best equilibrium payoff remains unchanged when the message space is expanded from 
ℳ⁂ to ℳ† ∪ ℳ⁂.
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unacceptable.

Timeline

To summarize, the timeline of the game is as follows:

1. The auditor privately learns her preferred report 𝑋 ∼ 𝐹(⋅; 𝜃) for the transaction 𝜃.

2. The auditor communicates about 𝑋 to the manager.

3. The manager observes the auditor’s message and chooses a report.

4. The auditor decides whether to accept the report 𝑟.

5. The payoffs realize.

Equilibrium Concept

I employ Perfect Bayesian Equilibrium (PBE) as the equilibrium concept.

Definition 1.  The tuple ⟨𝜎 , 𝛼, 𝑟 , 𝐵⟩ is a Perfect Bayesian Equilibrium (PBE) if the following 
conditions hold:

1. The auditor’s strategy (𝜎, 𝛼) maximizes her expected payoff for any 𝑋 and 𝑟.

2. The manager’s reporting strategy 𝑟 solves the reporting problem (4).

3. The manager’s belief updating rule 𝐵 follows Bayes’ law for on-path messages.

After observing 𝑋, the auditor chooses a message 𝜎(𝑋) ∈ ℳ(𝑋), where the message space 
is either precise (ℳ†(𝑋)) or vague (ℳ⁂(𝑋)). For 𝜎 to be part of a PBE, the auditor must not 
benefit from deviating to any other message 𝐷 ∈ ℳ(𝑋).

My primary focus is how the auditor shares her expertise. Thus, I focus on the auditor-
optimal equilibrium, defined as an equilibrium that maximizes the auditor’s expected payoff across 
all possible equilibria.

In the appendix, I show that a common equilibrium refinement provides strong support for 
an auditor-optimal equilibrium (Propositions A.1 and A.2). The refinement, originally developed 
by Grossman and Perry (1986) and Farrell (1993), is commonly used in truthful communication 
games (e.g., Bertomeu and Cianciaruso 2018; Glode et al. 2018; Aghamolla and Matsuno 2023).
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3.5 The Acceptance Decision and Terminology

The auditor accepts the report 𝑟 if and only if the acceptance payoff is greater than the rejection 
payoff:

𝛼(𝑟 , 𝑋 ) = 1 ⟺ 𝑢(𝑟, 𝑋) ≥ −(𝜋𝑅)2.

From (1), this condition reduces to |𝑟 − 𝑋 | ≤ 𝜋𝑅. Hence the auditor accepts any report 𝑟 ∈
[𝑋 − 𝜋𝑅, 𝑋 + 𝜋𝑅] and rejects all others.

Call a report 𝑟 acceptable if |𝑋 − 𝑟| ≤ 𝜋𝑅. A report such that |𝑋 − 𝑟| < 𝜋𝑅 gives the auditor a 
payoff strictly greater than −(𝜋𝑅)2. I call this a favorable report. Say that the auditor is indifferent
if she receives a report 𝑟 such that |𝑟 − 𝑋 | = 𝜋𝑅, in which case she receives a payoff of −(𝜋𝑅)2. 
The auditor wishes to induce a favorable report to obtain a payoff strictly greater than −(𝜋𝑅)2. I 
assume 𝑋 − 𝑋 > 2𝜋𝑅 in the case of bounded support.

4 The Reporting Problem for Arbitrary Intervals

The auditor’s communication strategy is shaped by how the manager reacts to the auditor’s 
message. I therefore begin with the manager’s reporting problem after he learns 𝑋 ∈ [𝑎, 𝑏]. Denote 
by 𝑎𝐹𝑏 the cumulative distribution function of 𝑋 truncated over the interval [𝑎, 𝑏]. Define the 
acceptance probability function by 𝐴(𝑟) ≔ 𝑎𝐹𝑏(𝑟 + 𝜋𝑅) − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅). It represents the probability 
that the report 𝑟 falls in the acceptance region [𝑋 −𝜋𝑅, 𝑋 +𝜋𝑅] given that 𝑋 ∈ [𝑎, 𝑏]. The reporting 
problem is to find a report 𝑟∗ ∈ [𝑋, 𝑋] that maximizes the manager’s expected payoff:

max
𝑟≥0

𝑟 𝐴(𝑟). (Report(𝑎, 𝑏))

The following lemma assures that Report(𝑎, 𝑏) always admits a unique solution.

Lemma 1.  For any [𝑎, 𝑏] ⊂ [𝑋, 𝑋], Report(𝑎, 𝑏) admits a unique solution 𝑟∗ ≥ 𝑎 + 𝜋𝑅.

The length of the interval matters. If 𝑏 − 𝑎 > 2𝜋𝑅, for any report 𝑟, there is always some 
chance that 𝑟 falls outside the auditor’s acceptance region. If on the other hand 𝑏 − 𝑎 ≤ 2𝜋𝑅, the 
manager can always choose a report in the middle to guarantee that the auditor accepts it. The 
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acceptance probability in this “short-interval” case is

𝐴(𝑟) =
⎧⎪
⎨⎪
⎩

𝑎𝐹𝑏(𝑟 + 𝜋𝑅) 𝑟 ∈ [𝑎 − 𝜋𝑅, 𝑏 − 𝜋𝑅)

1 𝑟 ∈ [𝑏 − 𝜋𝑅, 𝑎 + 𝜋𝑅]

1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) 𝑟 ∈ (𝑎 + 𝜋𝑅, 𝑏 + 𝜋𝑅].

(5)

Starting from 𝑟 = 𝑎 − 𝜋𝑅, the acceptance probability (5) increases with 𝑟. When 𝑟 is small, the 
manager worries that 𝑋 is actually too large. This would risk the report being too low to be 
accepted. Once 𝑟 reaches 𝑏 − 𝜋𝑅, the acceptance probability becomes one and stays constant until 
𝑟 = 𝑎 + 𝜋𝑅. Beyond this point, 𝐴(𝑟) decreases monotonically: the manager risks the possibility 
that the report is too high to be accepted. In Figure 2, I plot the acceptance probability (5) for a 
normal distribution.

Since 𝐴(𝑟) has a kink at 𝑟 = 𝑎 + 𝜋𝑅, the first-order condition of 𝑟𝐴(𝑟) alone does not 
determine the solution. There are two candidate solutions to Report(𝑎, 𝑏). One is the safe option, 
𝑟 = 𝑎 + 𝜋𝑅, which guarantees acceptance. Another is the risky option, denoted by 𝑟+, which solves 
the following auxiliary problem:

𝑟+ ≔ arg max
𝑟≥0

𝑟 (1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅)). (6)

This problem coincides with the reporting problem max 𝑟𝐴(𝑟) on (𝑎 + 𝜋𝑅, 𝑏 + 𝜋𝑅], but unlike the 
original problem, it assumes that the acceptance probability 1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) applies over the entire 
domain 𝑟 ≥ 0. I define 𝑟+ this way because the solution to Report(𝑎, 𝑏) reduces to a comparison of 
the safe and risky options:

𝑟∗ = max{𝑎 + 𝜋𝑅, 𝑟+}.

The manager chooses the risky option if and only if 𝑟+ > 𝑎 + 𝜋𝑅. This comparison is valid, 
even though the risky option is rejected with some probability and thus the manager’s payoff 
is 𝑣(𝑟+) = 𝑟+𝐴(𝑟+) < 𝑟+. The reason is revealed preference: since 𝑟+(1 − 𝑎𝐹𝑏(𝑟+ − 𝜋𝑅)) ≥
(𝑎 + 𝜋𝑅)(1 − 𝑎𝐹𝑏(𝑎)) = 𝑎 + 𝜋𝑅 by construction, the risky option must be infeasible (i.e., 𝑟+ < 𝑎 + 𝜋𝑅) 
whenever the manager chooses the safe option. See Figure 2 for an illustration.

To obtain the risky option 𝑟+, rewrite the objective of (6) in terms of the parent distribution 
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function:

𝑟 (1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅)) = 𝑟 (1 −
𝐹(𝑟 − 𝜋𝑅) − 𝐹(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
),

∝ 𝑟 (𝐹(𝑏) − 𝐹(𝑟 − 𝜋𝑅)),

where the second line follows by multiplying the first line by the positive constant 𝐹(𝑏) − 𝐹(𝑎). 
The first-order condition of (6) is thus

𝐹(𝑏) − 𝐹(𝑟 − 𝜋𝑅) = 𝑟𝑓 (𝑟 − 𝜋𝑅). (7)

Since any 𝑋 ∈ [𝑟 −𝜋𝑅, 𝑏] leads to acceptance, a unit increase in the report yields a marginal benefit 
of 𝐹(𝑏) − 𝐹(𝑟 − 𝜋𝑅). This is the left-hand side of (7). The right-hand side is the marginal cost of 
inflating the report. It reflects the increased rejection probability, which rises only at the lower 
end of the interval (i.e., when 𝑋 = 𝑟 − 𝜋𝑅). Near the upper bound 𝑏, the report is already too high 
to be accepted (𝑟 + 𝜋𝑅 > 𝑏), so marginal changes there have no effect on rejection.

Say that the manager gambles when he chooses the risky option, 𝑟∗ = 𝑟+. How does 
the message [𝑎, 𝑏] influence the manager’s incentive to gamble? The first consideration is the 
informativeness of the message—the length of the interval. In determining 𝑟+, the manager is only 
concerned with the upper bound 𝑏 of 𝑋. Indeed, the first-order condition (7)—and hence 𝑟+—is 
independent of the lower bound 𝑎. By contrast, the safe option 𝑎 + 𝜋𝑅 is pinned down by the lower 
bound 𝑎, regardless of the upper bound 𝑏. Therefore, for a fixed upper bound 𝑏, the manager is 
more likely to gamble when the lower bound 𝑎 is smaller (i.e., the message is vaguer). A smaller 𝑎
makes the safe option less attractive without affecting the risky one.

The second consideration is the content of the message—the location of the interval. Con­
sider messages of fixed length 𝑏 − 𝑎 ≡ Δ ≤ 2𝜋𝑅, and write the message [𝑎, 𝑏] as [𝑎, 𝑎 + Δ]. The 
manager’s expected payoff from the safe option is (𝑎 +𝜋𝑅)𝐴(𝑎 +𝜋𝑅) = 𝑎 +𝜋𝑅. A marginal increase 
in the report 𝑟 from the safe option changes the manager’s expected payoff by:

(𝑟 𝐴(𝑟))′| 𝑟=𝑎+𝜋𝑅 = 1 + (𝑎 + 𝜋𝑅)𝐴′, (8)

where 𝐴′ is the right-derivative of 𝐴 at 𝑎 + 𝜋𝑅. The first term is the marginal benefit of increasing 
𝑟 by one unit, fixing the acceptance probability at one. This is always one, regardless of the location
of the message. In contrast, the marginal cost, which is the second term of (8), decreases with 𝑎. 
The report 𝑎 + 𝜋𝑅 is now rejected with small probability 𝐴′, so the manager loses a fraction 𝐴′ of 
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the safe option 𝑎 + 𝜋𝑅.14 Consequently, the manager has a stronger incentive to gamble when the 
message is more negative (i.e., 𝑎 is smaller).

In sum, vaguer messages make the manager more likely to gamble; as do more negative 
messages that imply lower realizations of 𝑋.

Figure 2: Acceptance Probability

Note: The figure illustrates the acceptance probability 𝐴(𝑟) when 𝑋 ∼ 𝒩(1, 1), 𝜋𝑅 = 1, and [𝑎, 𝑏] = [0, 1].

Example 1  (Uniform Distribution).  Suppose that 𝑋 follows the uniform distribution 𝒰[𝑎, 𝑏]. In 
this case, the solution to Report(𝑎, 𝑏) and the optimal payoff are

𝑟∗ × 𝐴(𝑟∗) =

⎧
⎪⎪

⎨
⎪⎪
⎩

{
𝑏+𝜋𝑅
2 × 𝑏+𝜋𝑅

2(𝑏−𝑎) if 𝑏 < 3𝜋𝑅

(𝑏 − 𝜋𝑅) × 2𝜋𝑅
𝑏−𝑎 if 𝑏 ≥ 3𝜋𝑅

if 𝑏 − 𝑎 > 2𝜋𝑅,

{
𝑏+𝜋𝑅
2 × 𝑏+𝜋𝑅

2(𝑏−𝑎) if 𝑎 < 𝑏−𝜋𝑅
2

(𝑎 + 𝜋𝑅) × 1 if 𝑎 ≥ 𝑏−𝜋𝑅
2

if 𝑏 − 𝑎 ≤ 2𝜋𝑅.

(9)

Focus on the case 𝑏 − 𝑎 ≤ 2𝜋𝑅. The manager’s risky option is 𝑟+ = (𝑏 + 𝜋𝑅)/2. He gambles when 
𝑎 < 𝑏−𝜋𝑅

2 . For a fixed 𝑏, this condition implies that the manager gambles when the message is 
sufficiently vague (i.e., 𝑎 is sufficiently small). Moreover, as 𝑏 becomes smaller, the range of 𝑎 that 
induces gambling expands: the manager is more likely to gamble when the message contains more 
negative information (location effect).

14To be precise, the right derivative 𝐴′ at 𝑎 + 𝜋𝑅 also changes with 𝑎 unless 𝑋 is uniformly distributed. Using 
log-concavity, one can show that 𝐴′ is decreasing in 𝑎.
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5 Precise Communication and the Gatekeeper’s Dilemma

5.1 Precise Information is Exploited

Suppose that the auditor uses precise communication (i.e., ℳ = ℳ†). Once the auditor communi­
cates 𝑋, the manager learns that the auditor will accept any report in the interval [𝑋 − 𝜋𝑅, 𝑋 + 𝜋𝑅]. 
Therefore the manager reports

𝑟∗ = max{𝑋 + 𝜋𝑅, 0}.

The auditor is always indifferent, receiving a payoff of −(𝜋𝑅)2—the auditor is perfectly gamed.
To avoid being gamed, the auditor can remain silent. The auditor’s precise communication 

strategy 𝜎 induces a silence set, 𝒳0 ≔ {𝑋 ∣ 𝜎(𝑋) = ∅}, which is the set of 𝑋 realizations she does 
not reveal. The auditor’s silence signals that 𝑋 ∈ 𝒳0.

5.2 When to Stay Silent

What is an auditor-optimal silence set 𝒳0? One obvious candidate is to always stay silent (i.e., 
𝒳0 = [𝑋, 𝑋]). This constitutes an equilibrium: if the auditor deviates and reveals 𝑋, then the 
manager will report 𝑟 = 𝑋 + 𝜋𝑅, which makes the auditor indifferent. Can the auditor do better 
than this?

By selectively revealing certain pieces of information, the auditor can give meaning to her 
silence. The auditor’s expected payoff is given by

ℙ(𝑋 ∈ 𝒳0)𝔼[𝑢(𝑟0, 𝑋 ) ∣ 𝑋 ∈ 𝒳0] + ℙ(𝑋 ∉ 𝒳0)(−(𝜋𝑅)2), (10)

where 𝑟0 ≔ 𝑟(𝒳0) is the manager’s response to the auditor’s silence. This expression captures the 
auditor’s fundamental tradeoff—the gatekeeping expert’s dilemma. For a fixed 𝒳0, the auditor 
prefers a larger silence set, since 𝑢(𝑟0, 𝑋 ) ≥ −(𝜋𝑅)2. As 𝒳0 grows, however, the manager’s report 
𝑟0 drifts further from the benchmark 𝑋, reducing 𝔼[𝑢(𝑟0, 𝑋 ) ∣ 𝑋 ∈ 𝒳0]. In short: the auditor can 
protect herself from being gamed by expanding 𝒳0, but at the cost of receiving reports that diverge 
more from 𝑋.

Not all silence sets can be supported in equilibrium. When 𝑋 ∉ 𝒳0, the auditor’s expected 
payoff under the prescribed strategy is −(𝜋𝑅)2. If she deviates and stays silent, then she obtains 
the payoff of 𝑢(𝑟0, 𝑋 ) ≥ −(𝜋𝑅)2. The inequality is strict when the induced report 𝑟0 is favorable 
(i.e., |𝑋 − 𝑟0| < 𝜋𝑅). Conversely, when 𝑋 ∈ 𝒳0, the auditor does not have an incentive to reveal 𝑋, 
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as doing so yields the lowest payoff of −(𝜋𝑅)2. Therefore, the equilibrium constraint is

|𝑋 − 𝑟0| ≥ 𝜋𝑅 for all 𝑋 ∉ 𝒳0. (11)

An optimal silence set, denoted by 𝒳∗
0 , is one that maximizes the auditor’s payoff (10) across all 

possible equilibria under the equilibrium constraint (11).
When 𝑋  follows a uniform distribution, a particularly simple solution is available: the 

auditor does not communicate at all.

Proposition 1.  Suppose that 𝑋 ∼ 𝒰[𝑋, 𝑋]. With precise communication, the auditor is indifferent 
between any of {𝒳0 ∣ |𝒳0| ≥ 2𝜋𝑅}. In particular, the no-communication equilibrium is auditor-optimal: 
𝒳∗
0 = [𝑋, 𝑋].

To understand this result, consider the introductory example where 𝑋 ∼ 𝒰[1, 9]. If 
𝒳0 = [1, 9], the manager reports 𝑟0 = 8. The auditor would like to communicate information 
when 𝑋 ≤ 7, which leads her to reject 𝑟0. She can do this by staying silent on some 𝒳0 ⊂ [1, 7]. 
To implement this strategy, however, she must precisely communicate values of 𝑋 in [7, 9]. By 
staying silent on [1, 7], she effectively shifts the range in which she accepts reports from [7, 9] to 
some subset of [1, 7]. Proposition 1 shows that, under the equilibrium constraint (11), this kind of 
strategy is not valuable.

For general log-concave distributions, the density of 𝑋 is not constant. Then it can be 
valuable to shift the interval over which the auditor receives a favorable report. The auditor’s 
optimal silence set becomes a proper subset of the support of 𝑋.

Example 2  (The Normal Distribution).  Suppose that 𝑋 ∼ 𝒩 (1, 1). Let 𝜋𝑅 = 1. If the auditor 
does not communicate anything (𝒳0 = (−∞,∞)), the manager reports 𝑟0 ≈ 1.78. The auditor’s 
expected loss is then about 0.62. If the auditor could induce any report independent of the silence 
set, she would choose 𝑟0 = 𝜇 = 1 with 𝒳0 ⊃ [𝜇 − 𝜋𝑅, 𝜇 + 𝜋𝑅]. But in equilibrium, the silence set 
and the induced report are intertwined. An optimal silence set is 𝒳∗

0 = (−∞, 𝑏∗) with 𝑏∗ ≈ 2.61, 
under which the manager reports 𝑟∗0 ≈ 1.61. By eliminating the high realizations of 𝑋 from the 
silence set, the auditor shifts the manager’s report closer to the ideal point 𝜇. Since 𝑟∗0 + 𝜋𝑅 = 𝑏∗, 
the equilibrium constraint (11) is binding. Under the optimal strategy, the auditor’s expected loss 
is 0.56. The auditor’s expected loss is about 11% smaller under the optimal strategy than under 
no communication. Online supplementary material (Appendix C.1) develops a characterization 
of the optimal silence set for general log-concave distributions and provides more detail on this 
example.
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This analysis foreshadows the value of vague communication. The auditor wants to guide 
the manager’s report while maintaining some uncertainty. Precise communication forces a stark 
choice: stay silent, or speak and be gamed. Vague language offers a way to do both.

6 Gatekeeping with Vague Language

6.1 The Optimal Communication Strategy with Vague Language

Maximal Acceptance Lemma

A vague communication strategy 𝜎 induces a partition of the support of 𝑋. Represent the induced 
partition by 𝒟 = ⋃𝑖∈𝐼 𝐷𝑖, where 𝐼 is a countable index set, 𝐷𝑖 ≔ [𝑑𝑖, 𝑑𝑖+1], and 𝜎([𝑑𝑖, 𝑑𝑖+1]) = 𝐷𝑖.15 
Let 𝑟𝑖 ≔ 𝑟(𝐷𝑖) be the manager’s report upon learning that 𝑋 ∈ 𝐷𝑖.

An auditor-optimal partition is characterized by the following optimization problem:

min
𝒟

∑
𝑖∈𝐼

ℙ(𝑋 ∈ 𝐷𝑖)𝔼[𝛼(𝑟𝑖, 𝑋 )(𝑟𝑖 − 𝑋)2 + (1 − 𝛼(𝑟𝑖, 𝑋 ))(𝜋𝑅)2 ∣ 𝑋 ∈ 𝐷𝑖]. (OP)

For each 𝑋 ∈ 𝐷𝑖 the manager reports 𝑟𝑖, and thus the auditor’s loss is min{(𝑟𝑖 − 𝑋)2, (𝜋𝑅)2}. In 
an optimal partition, each interval must be neither too small—lest the manager’s report become 
barely acceptable; nor must it be too large—lest the report become too far from 𝑋.

The optimal partition problem (OP) takes into account the manager’s equilibrium behavior 
through 𝑟𝑖 and the auditor’s equilibrium acceptance rule through 𝛼(𝑟𝑖, 𝑋 ). What is missing is the 
equilibrium condition on the auditor’s communication strategy 𝜎. For a partition 𝒟 to be an 
equilibrium, the auditor must be deterred from deviating to a different message after observing 𝑋
(see Definition 1). For now I set aside this incentive constraint and return to it after solving OP.

The problem OP is potentially complex, as the space of feasible partitions is large. Yet the 
following lemma shows that it is without loss to restrict attention to a narrower class of partitions.

Lemma 2  (Maximal Acceptance Lemma).  Consider the vague communication case (i.e., ℳ = ℳ⁂). 
In an auditor-optimal outcome, the ex-ante probability of acceptance is maximized among all possible 
equilibria.

Moreover, without loss of generality, an auditor-optimal partition can be restricted to those 
satisfying the following properties:

15I represent the partition as a collection of (closed) intervals, instead of cutoff points. Thus, each element in the 
partition is an interval corresponding to a message.
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• For each interval in the partition, the manager’s report is accepted with probability either zero 
or one.

• At most one interval in the partition has the resulting acceptance probability of zero.

The result is of independent interest, beyond its role in solving the optimal partition 
problem. It shows that the auditor leaves no room to improve the likelihood of receiving an 
acceptable report. To see why, fix a communication strategy and consider a message 𝐷 = [𝑎, 𝑏]
that is part of the strategy and satisfies 𝑏 − 𝑎 > 2𝜋𝑅. In response to 𝐷, the manager reports 𝑟, 
which falls in the upper part of [𝑎, 𝑏]. Then the auditor with realization 𝑋 ∈ [𝑎, 𝑟 − 𝜋𝑅] finds the 
report 𝑟 unacceptable and rejects it. Now consider another communication strategy that differs 
only on 𝐷 by splitting 𝐷 into [𝑎, 𝑟 − 𝜋𝑅] and [𝑟 − 𝜋𝑅, 𝑏]. In the lower subinterval, the manager 
proposes a report that is acceptable for some 𝑋 ∈ [𝑎, 𝑟 − 𝜋𝑅]. Thus the auditor’s payoff improves 
conditional on 𝑋 ∈ [𝑎, 𝑟 − 𝜋𝑅]. However, when 𝑋 ∈ [𝑟 − 𝜋𝑅, 𝑏], the manager’s report may rise 
above 𝑟, potentially reducing the auditor’s payoff there. Lemma 2 shows that the payoff gain 
always outweighs the loss, so the new strategy is strictly better for the auditor.

In an auditor-optimal outcome, some message may lead to an unacceptable report, because 
the manager’s default report is constant at 𝑟 = 0. If the realized 𝑋 might fall well below zero, the 
manager would report 𝑟 = 0 regardless of how the auditor communicates. Lemma 2 says that the 
auditor can bundle all such information onto one interval with zero acceptance probability.

No-Gambling Constraint

Owing to the Maximal Acceptance lemma, our task is now to identify messages that lead to 
acceptable reports. Thus I turn back to the manager’s reporting problem. I analyze when the 
manager chooses the safe option over the risky one.

In order to ensure that there is a report that is acceptable with probability one, the interval 
length must be no greater than 2𝜋𝑅. This is not sufficient to ensure no gambling. In Example 1, 
we have seen that the message 𝐷 = [𝑎, 𝑏] must satisfy 𝑎 ≥ (𝑏 − 𝜋𝑅)/2 in addition to 𝑏 − 𝑎 ≤ 2𝜋𝑅. 
To discourage the manager from selecting the risky option, the auditor cannot be too vague: for 
each right endpoint 𝑏, the left endpoint 𝑎 must be sufficiently large.

Let Γ𝐺(𝑏) < 𝑏 denote the minimum value of 𝑎 for which the manager, conditional on 
receiving message 𝐷 = [𝑎, 𝑏], selects the safe option.16 For each right endpoint 𝑏 > −𝜋𝑅, the left 
endpoint 𝑎 must satisfy

𝑎 ≥ Γ(𝑏) ≔ max{Γ𝐺(𝑏), 𝑏 − 2𝜋𝑅}. (12)

16Lemma A.1 shows that such a value exists.
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I refer to the condition 𝑎 ≥ Γ𝐺(𝑏) as the no-gambling constraint. In case of a uniform distribution 
(Example 1), this constraint simplifies to Γ𝐺(𝑏) = (𝑏 − 𝜋𝑅)/2. I call the combined full constraint 
(12) the acceptance constraint.

When Γ𝐺(𝑏) ≥ 𝑏 − 2𝜋𝑅, I say that the no-gambling constraint is relevant. In this case, the 
auditor must provide sufficiently precise information to deter the manager from gambling. In 
contrast, when the no-gambling constraint is irrelevant, the auditor needs only to ensure that the 
interval length is no greater than 2𝜋𝑅, irrespective of the location of the interval. The following 
lemma characterizes when the no-gambling constraint is relevant.

Lemma 3.  Consider a general distribution of 𝑋. For each right endpoint 𝑏 > −𝜋𝑅, the no-gambling 
constraint is relevant if and only if 𝑏 is sufficiently low. Specifically, there exists a unique 𝑏̂ ∈ (−𝜋𝑅, 𝑋]
such that Γ𝐺(𝑏) ≥ 𝑏 − 2𝜋𝑅 if and only if 𝑏 ≤ 𝑏̂.

According to this lemma, for high realizations of 𝑋 (i.e., for 𝑏 high enough), the no-gambling 
constraint is irrelevant. This is because of the location effect discussed in Section 4. The risky 
option becomes more attractive as the message shifts rightward at a rate slower than the safe 
option does, because the risky option is rejected with some probability.

The takeaway from Lemma 3 is that the auditor can afford to be vaguer on the right tail 
of the distribution of 𝑋. This “vaguer on the right” principle plays a key role in equilibrium 
communication strategies.

The Optimal Partition

From the Maximum Acceptance property and the acceptance constraint, I can now reformulate 
the auditor’s optimal partition problem:

min
𝒟

∑
𝑖∈𝐼

ℙ(𝑋 ∈ 𝐷𝑖)𝔼[(𝑟𝑖 − 𝑋)2 ∣ 𝑋 ∈ 𝐷𝑖],

s.t. 𝑑𝑖 ≥ Γ(𝑑𝑖+1) = max{Γ𝐺(𝑑𝑖+1), 𝑑𝑖+1 − 2𝜋𝑅}, ∀𝑖 ≥ 1.
(OP′)

The auditor seeks to minimize the expected loss from accepting the manager’s report. The 
constraints ensure that the manager does not select the risky option over the safe option. The 
precise form of Γ depends on the distribution of 𝑋.

Theorem 1.  Let 𝒟∗ be a solution to OP′. A communication strategy inducing the partition 𝒟∗

constitutes a vague-communication equilibrium.

This theorem establishes that the auditor-optimal communication strategy is indeed part 
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of an equilibrium. In this equilibrium, the manager responds to an off-path message based on his 
most favorable interpretation of the message (see appendix for details). This in turn deters the 
auditor from deviating to a different message after observing 𝑋.

The auditor-optimal equilibrium highlights the strategic power of vague communication. 
Under this equilibrium, the auditor carefully balances the tension between being overly transparent 
and excessively vague. To clarify this point, I now explicitly construct the optimal partition.

6.2 Constructing the Optimal Partition

A Direct Approach: The Uniform Case

Instead of solving OP′ in full generality, I begin with the case of a uniform distribution. The 
analytical tractability allows us to discern key economic forces at play. For simplicity, I assume 
that 𝑋 ≥ −𝜋𝑅, which ensures that the acceptance probability is one in the auditor-optimal partition 
(Corollary A.1).

I start with rewriting the optimal partition problem OP′ using the properties of the uniform 
distribution. From (9), the acceptance constraint is Γ(𝑏) = max{𝑏 − 2𝜋𝑅, (𝑏 − 𝜋𝑅)/2}. The expected 
loss in each interval is 𝔼[(𝑟𝑖 − 𝑋)2 ∣ 𝑋 ∈ 𝐷𝑖] =

´ 𝑑𝑖+1
𝑑𝑖

(𝑟𝑖 − 𝑥)2/(𝑑𝑖+1 − 𝑑𝑖) 𝑑𝑥. After computing this 
integral, the problem OP′ reads as follows:

min
𝒟

∑
𝑑𝑖+1 − 𝑑𝑖
𝑋 − 𝑋

[(𝜋𝑅)2 − 𝜋𝑅(𝑑𝑖+1 − 𝑑𝑖) +
1
3
(𝑑𝑖+1 − 𝑑𝑖)2] ,

s.t. 𝑑𝑖 ≥ max{𝑑𝑖+1 − 2𝜋𝑅, (𝑑𝑖+1 − 𝜋𝑅)/2}, ∀𝑖 ≥ 0.
(13)

The auditor addresses the gatekeeping expert’s dilemma by choosing the appropriate 
amount of information she provides. The constraints 𝑑𝑖 ≥ max{𝑑𝑖+1 − 2𝜋𝑅, (𝑑𝑖+1 − 𝜋𝑅)/2} limit 
how vague the auditor can be without inducing the manager to gamble. Within this bound, the 
auditor does not want to reveal too much, but also avoids being too vague. As the auditor becomes 
vaguer (i.e., as 𝑑𝑖+1 − 𝑑𝑖 grows), the expected loss initially falls, reflecting the value of vagueness in 
deterring gaming. Beyond a certain point, the expected loss starts to rise, as excessive vagueness 
induces reports too far from 𝑋.

To solve (13), first suppose the no-gambling constraint is not relevant. In this relaxed 
problem, the objective in (13) as well as the constraint 𝑑𝑖+1 − 𝑑𝑖 ≤ 2𝜋𝑅 depend only on the interval 
length. Hence, a uniform partition—one that divides the support into equal intervals—achieves the 
optimal solution. Denote by Δ ≔ 𝑑𝑖+1 − 𝑑𝑖 the interval length. Represent the conditional expected 
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loss as a function of Δ by ℓ(Δ) ≔ (𝜋𝑅)2 − 𝜋𝑅Δ + Δ2/3. The loss function ℓ is minimized at

Δideal ≔ 1.5𝜋𝑅,

which satisfies the constraint Δ ≤ 2𝜋𝑅. Thus, ideally, the auditor would like to choose the uniform 
partition with interval length Δideal.

However, Δideal may not be a feasible solution: intervals of length Δideal may not exactly 
cover the support of 𝑋. To fit the support, the auditor must choose the uniform partition whose 
interval length Δ is closest to Δideal. The equilibrium interval length is therefore given by

Δ∗ =
𝑋 − 𝑋
𝑁 ∗ , 𝑁 ∗ = arg min

𝑁∈ℕ
{ |
𝑋 − 𝑋
𝑁

− 1.5𝜋𝑅| |
𝑋 − 𝑋
𝑁

≤ 2𝜋𝑅 } . (14)

The solution involves a simple integer optimization problem. For a given set of parameters, 
it is straightforward to solve the problem as illustrated in the following example.17

Example 3  (Uniform Partition (𝑋 ∼ 𝒰[1, 9] and 𝜋𝑅 = 1)).  Consider the introductory example 
discussed in Section 2. Observe that 𝑋−𝑋 = 8, 8/5 = 1.6,  and 8/6 = 1.3̇. Thus the optimal uniform 
partition has size 𝑁 ∗ = 5, with interval length Δ∗ = 1.6. The associated loss is ℓ(1.6) = 19/75 =
0.253̇, which is an improvement of about 70% over the no-communication loss of 5/6. Figure 1 
(right panel) shows the optimal partition. The uniform partitioning satisfies the no-gambling 
constraint. At the lowest interval, this can be verified from 1 ≥ (2.6 − 1)/2. Since the no-gambling 
constraint becomes increasingly slack for higher intervals, it holds throughout the partition. Hence 
the uniform partition is indeed optimal.

So far we have ignored the no-gambling constraint, 𝑑𝑖 ≥ (𝑑𝑖+1 − 𝜋𝑅)/2. In the example 
above, this was without loss. When is this justified? From Lemma 3, the no-gambling constraint is 
irrelevant when the lower bound of the support 𝑋 is sufficiently high. Under a uniform partition, 
the no-gambling constraint 𝑑𝑖 ≥ (𝑑𝑖+1 − 𝜋𝑅)/2 simplifies to 𝑑𝑖 + 𝜋𝑅 ≥ Δ. If 𝑋 ≥ 𝜋𝑅 then Δ ≤ 2𝜋𝑅

alone guarantees that 𝑑𝑖 + 𝜋𝑅 − Δ ≥ 𝑋 + 𝜋𝑅 − 2𝜋𝑅 ≥ 0 for all 𝑑𝑖 ∈ [𝑋, 𝑋). Thus 𝑋 ≥ 𝜋𝑅 suffices to 
ensure the optimality of the uniform partition.

When 𝑋 < 𝜋𝑅, however, the no-gambling constraint may bind, and the optimal partition 
may no longer be uniform. When the realizations of 𝑋 are small, the manager’s incentive to inflate 
the report is strong, so the auditor must provide more information to ensure an acceptable report.

In this scenario, the problem (13) becomes an infinite-dimensional, nonlinear optimization 

17A fully explicit solution is provided in the online supplementary material (Appendix C.2).
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problem with linear constraints. Unlike the uniform-partition case, where the problem reduces to 
selecting an optimal number and length of intervals, we must now consider all possible partitions of 
the support of 𝑋. Explicit analytical solutions become generally infeasible. Nevertheless, for given 
parameters, it is straightforward to solve the problem by computing the optimal value for each 
size 𝑁 of the partition. The following example illustrates the solution to the optimal partitioning 
problem when the no-gambling constraint binds.

Example 4  (Non-Uniform Partition). Suppose that 𝑋 ∼ 𝒰[0, 6] and 𝜋𝑅 = 1. The sufficient 
condition for a uniform partition, 𝑋 ≥ 𝜋𝑅, is violated. Since (6 − 0)/4 = 1.5 = Δideal, the 
optimal uniform partition has size 𝑁 ∗ = 4. In the leftmost interval [0, 1.5], the no-gambling 
constraint is violated: from (9), the manager’s report is 𝑟 = 1.25, while the safe option is 𝑟 = 1. 
To construct an auditor-optimal equilibrium, suppose that the no-gambling constraint relevant 
only in the first interval [0, 𝑑1]. Over the remaining interval [𝑑1, 6], a uniform partition is optimal. 
The auditor-optimal equilibrium is then obtained by choosing 𝑑1 to minimize expected loss, 
subject to the relevant constraints. The optimal cutoff is 𝑑∗1 = 1 and yields the partition 𝒟∗ =
[0, 1] ∪ [1, 1 + Δ] ∪ [1 + Δ, 1 + 2Δ] ∪ [1 + 2Δ, 6] with Δ = 5/3 ≈ 1.67. Under this partition, the 
auditor’s loss is 22/81 ≈ 0.27. By similar calculations, one can derive the optimal loss when the 
no-gambling constraint is relevant for two or more intervals and verify that the above solution is 
indeed optimal.

A Dynamic Programming Approach

Since the reporting problem Report(𝑎, 𝑏) lacks a closed-form solution outside the uniform-distribution 
case, it is challenging to explicitly solve for the auditor’s optimal communication strategy. Thus I 
adopt a dynamic programming approach to derive the auditor’s strategy.18 This method is more 
flexible and broadly applicable, but offers limited economic intuition. Accordingly, I relegate the 
details to the appendix.

Denote by 𝐿(𝑏) the auditor’s expected loss in an auditor-optimal equilibrium when the 
original distribution of 𝑋 is truncated to [𝑋, 𝑏]. Define ℓ(𝑎, 𝑏) ≔ 𝔼[(𝑟([𝑎, 𝑏]) − 𝑋)2 ∣ 𝑋 ∈ [𝑎, 𝑏]] as 
the expected loss from accepting the manager’s report when 𝑋 ∈ [𝑎, 𝑏].

18Ali et al. (2023b) use a similar approach to derive the optimal segmentation of buyer types in a monopolistic 
screening setting.
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Proposition 2.  The optimal partition of [𝑋, 𝑏] is characterized by

𝐿(𝑏) = min
𝑎∈[Γ(𝑏),𝑏]

ℙ(𝑋 ≥ 𝑎 ∣ 𝑋 ≤ 𝑏)ℓ(𝑎, 𝑏) + ℙ(𝑋 ≤ 𝑎 ∣ 𝑋 ≤ 𝑏)𝐿(𝑎). (15)

This functional equation admits a unique solution 𝐿.

Let 𝜆(𝑏) be the solution to (15). Then [𝜆(𝑏), 𝑏] forms the rightmost interval in the optimal 
partition of [𝑋, 𝑏]. Starting from 𝜆(𝑏), we solve (15) again to identify the next interval, [𝜆(𝜆(𝑏)), 𝜆(𝑏)], 
and so on. The sequence {𝜆(𝑖)(𝑏)} defined recursively by 𝜆(𝑖+1)(𝑏) = 𝜆(𝜆(𝑖)(𝑏)) gives the cutoffs that 
define the auditor-optimal partition of [𝑋, 𝑏]. The limit lim𝑏→𝑋 𝐿(𝑏) is the auditor’s expected loss 
in the original problem OP′.

7 Comparative Statics

I now study how the auditor’s optimal communication strategy changes with the auditor’s in­
dependence (𝜋𝑅) and the transaction characteristics (𝜃 ). In general, formal comparative statics 
are difficult, as the optimal partition problem (OP′) does not admit a closed-form solution. An 
important exception is the case of uniform distributions. Outside this special case, I rely on 
numerical simulations to illustrate the comparative statics.

7.1 The Effect of Independence

How does the independence parameter 𝜋𝑅 affect the auditor’s optimal communication strategy? 
Recall that a lower 𝜋𝑅 corresponds to a lower cost of rejection and thus a more independent 
auditor. I analyze the equilibrium amount of information the auditor provides. For a partitional 
communication strategy 𝜎, it is defined by the overall reduction in the variance of 𝑋:

Info(𝜎) ≔
Var(𝑋) − 𝔼[Var(𝑋 ∣ 𝜎(𝑋))]

Var(𝑋)
. (16)

The numerator is equivalent to the variance of the posterior expectation. When the auditor 
communicates more precisely, each of Var(𝑋 ∣ 𝜎(𝑋)) becomes smaller and thus the amount of 
information is larger. I normalize the amount of information by the prior variance, so that it ranges 
from 0 (no information) to 1 (full information).

For the case of the uniform distribution with a uniform partition, a sharp characterization 
is available: 
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Proposition 3.  Suppose that 𝑋 follows a uniform distribution with 𝑋 > 0. The auditor communicates 
more precisely as she becomes more independent for 𝜋𝑅 ∈ (0, 𝑋): (i) the number of partitions is weakly 
decreasing in 𝜋𝑅, and (ii) the amount of information, Info(𝜎), is weakly decreasing in 𝜋𝑅.

The result is intuitive. A more independent auditor is more strict in rejecting the manager’s 
report. Since the optimal communication strategy must ensure that the manager’s report is 
always acceptable, the auditor must partition the support of 𝑋 into smaller intervals. Monotone 
comparative statics formalizes this intuition (Milgrom and Shannon, 1994). The condition 𝜋𝑅 ∈
(0, 𝑋) guarantees that a uniform partition is optimal.

The second part is a direct consequence of the first part. The posterior variance is the same 
for each possible message 𝐷 = [𝑑𝑖, 𝑑𝑖+1] and is the variance of the uniform distribution over 𝐷:

Var(𝑋 ∣ 𝐷𝑖) =
(𝑑𝑖+1 − 𝑑𝑖)2

12
=

(Δ∗)2

12
.

If the number of intervals is weakly decreasing in 𝜋𝑅 (part (i)), then the partition size Δ∗ is weakly 
increasing in 𝜋𝑅. Therefore, Var(𝑋 ∣ 𝐷𝑖) is weakly increasing in 𝜋𝑅.

What if a uniform partition is not optimal? In that case, the no-gambling constraint 
𝑑𝑖 ≥ (𝑑𝑖+1 − 𝜋𝑅)/2 becomes crucial. The auditor must depart from a uniform partition to ensure 
that the manager’s report is always acceptable. To illustrate, consider a small increase in 𝜋𝑅. 
The no-gambling constraint becomes easier to satisfy, as the auditor becomes willing to accept a 
wider range of reports. Let 𝒟ideal be the solution to the relaxed version of the optimal partition 
problem OP′, in which the no-gambling constraint is ignored. Since a uniform partition is optimal 
under the relaxed problem, denote by 𝑁 ideal the number of partitions in 𝒟ideal. When 𝜋𝑅 rises but 
𝑁 ideal does not change, the actual partition 𝒟∗ moves toward the ideal uniform partition 𝒟ideal. 
Consequently, the posterior variance decreases (more information).

Figure 3 illustrates how the independence parameter 𝜋𝑅 affects the equilibrium communi­
cation strategy. The left column shows the auditor’s optimal partitioning (top) and the amount 
of information as 𝜋𝑅 varies. Consistent with Proposition 3, the partition becomes coarser as the 
auditor becomes less independent, and the amount of information correspondingly decreases. 
When a uniform partition is not feasible, the right column highlights a non-monotonic relationship 
between 𝜋𝑅 and the amount of information. When the auditor becomes less independent, if the 
number of partitions stays the same (e.g., 𝜋𝑅 = 2.3 to 𝜋𝑅 = 2.5), then the partition approaches 
the ideal uniform partition. As a result, the amount of information increases in response to an 
increase in 𝜋𝑅.
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Figure 3: Comparative Statics: Uniform vs. Non-Uniform Partition

Note: The figure compares the auditor’s optimal partitioning and the amount of information, defined in (16), under 
uniform distributions. The left column corresponds to the case of a uniform partition (𝑋 ∼ 𝒰[2, 9]), the right column 
to one with a non-uniform partition (𝑋 ∼ 𝒰[0, 9]). The top panels show the partition structure as a function of the 
independence parameter 𝜋𝑅; each horizontal segment represents an interval. The bottom panels plot the amount of 
information against 𝜋𝑅. The amount of information is normalized by the prior variance, so that it ranges from 0 to 1.

The mechanics described above extends beyond the uniform distribution cases. The distor­
tion from the relaxed partition 𝒟ideal occurs when the no-gambling constraint is relevant. Consider 
a small decrease in 𝜋𝑅 (i.e., the auditor becomes more independent). The auditor is willing to 
accept a narrower range of reports, so she must be more precise. This effect is especially strong 
when 𝑋 is low compared to when 𝑋 is high, because the no-gambling constraint is relevant only 
for small realizations of 𝑋 (Lemma 3). In turn, she can now afford to be vaguer when 𝑋 is high, 
because there is more room to adjust the communication strategy to be closer to 𝒟ideal. In other 
words, as 𝜋𝑅 decreases, the distortion from 𝒟ideal may shrink for the right tail of the distribution 
of 𝑋. When the “vaguer on the right” effect dominates, the amount of information decreases as 
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the auditor becomes more independent.
The preceding discussion suggests that the negative effect of increased independence on 

the auditor’s information provision is more likely when the distribution of 𝑋 places greater mass 
near the origin, where the no-gambling constraint is relevant. The top panels of Figure 4 illustrate 
this point for the case of a normal distribution. The left panel plots the amount of information 
against 𝜋𝑅 when the mean of 𝑋 is low; the right panel does so when the mean is high. In the 
low-mean case, as the auditor becomes less independent (i.e., as 𝜋𝑅 increases), the amount of 
information first rises, then declines. In the high-mean case, the region of 𝜋𝑅 in which information 
increases as the auditor becomes less independent virtually disappears.

7.2 The Effect of Transaction Complexity

So far I have fixed the transaction characteristics 𝜃 (i.e., the distribution of 𝑋). Now I analyze how 
𝜃 affects the equilibrium communication. I vary the variance of 𝑋 while holding its mean fixed. A 
higher variance of 𝑋 corresponds to greater transaction complexity and thus greater importance 
of the auditor expertise. More complex transactions, such as mergers and acquisitions, require 
greater judgment and estimation to apply relevant standards. As a result, the auditor’s preferred 
report has more uncertainty ex-ante, and the auditor has more to guide the manager on.

Specifically, I consider the family of distributions {𝐹 (⋅ ; 𝜃)}𝜃∈Θ with a common support and 
satisfying the following property:

Var(𝑋 ∣ 𝜃) is increasing in 𝜃,

where Θ ≔ [0,∞). Higher values of 𝜃 correspond to more complex transactions and, consequently, 
to greater information asymmetry between the auditor and the manager.

For concreteness, I consider a normal distribution case: 𝑋 ∼ 𝒩(𝜇, 𝜎2𝜃 ), where 𝜎2 ≔ 𝜎20 (1+𝜃)
with the constant baseline variance 𝜎20 > 0. Normal distributions are a natural choice for modeling 
transaction complexity because they are fully characterized by their first two moments and have 
unbounded support.

There are several forces at play.19 Suppose that the mean of 𝑋 is low, say 𝜇 < 0. Fix 
the equilibrium communication strategy, and consider a marginal increase in 𝜎𝜃. Recall that the 
no-gambling constraint is relevant only when 𝑋 lies near the origin, where the auditor must be 
relatively precise. When the mean of 𝑋 is low, increasing the variance shifts probability mass 
away from the origin and into the right tail, where the no-gambling constraint is irrelevant. As 

19The logic described applies in general to any strictly log-concave distribution, which is unimodal.
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a result, under the fixed communication strategy, the new distribution places more weight on 
regions where the auditor is less precise. The amount of information thus decreases relative to the 
increase in 𝜎𝜃. I call this the statistical effect.

Second, consider how the equilibrium communication strategy itself changes with 𝜎𝜃. The 
key is how transaction complexity alters the manager’s incentive. If [𝑎, 𝑏] lies in the right tail, an 
increase in the variance of 𝑋 pushes more probability mass to the right. This makes the manager 
more likely to inflate his report, prompting the auditor to provide more information. When 𝜇 is 
low, a majority of messages fall to the right of the mean. Consequently, increasing 𝜎𝜃 encourages 
gambling by the manager, and the auditor must provide more information on average. I call this 
the strategic effect.

In summary, the two forces work in opposite directions. The statistical effect is the 
mechanical impact of altering the prior distribution; holding the communication strategy fixed, 
a change in 𝜎𝜃 shifts the probability mass between regions where the no-gambling constraint is 
relevant and where it is not. The strategic effect arises from the manager’s incentive to inflate his 
report; a change in 𝜎𝜃 alters the manager’s incentive, which in turn induces the auditor to adjust 
her communication strategy. Which effect dominates depends on the mean of 𝑋.

The bottom panels of Figure 4 illustrate the comparative statics. When 𝜇 is low, most 
realizations of 𝑋 lie in the right tail. The statistical effect shifts probability mass further to the 
right, where the no-gambling constraint is irrelevant and the auditor is relatively vague. This effect 
initially dominates, and the amount of information declines as 𝜎𝜃 rises (relative to the increase in 
𝜎𝜃). The strategic effect, by contrast, strengthens the manager’s incentive to gamble and forces the 
auditor to be more precise. As a result, for some values of 𝜎𝜃, the adjustment in the communication 
strategy dominates, and the amount of information may increase.

Alternatively, when 𝜇 is high, most realizations of 𝑋 fall in the left tail. Thus the statistical 
effect shifts mass from the precise region to the vague region, decreasing the overall amount 
of information. The counteracting strategic force arises, as added complexity discourages the 
manager from gambling and allows the auditor to be vaguer. For most values of 𝜎𝜃, the statistical 
effect dominates, and the amount of information increases.

7.3 Empirical Implications

The analysis yields several empirical implications for financial auditing. The model predicts a 
non-monotonic relationship between auditor independence and the amount of information the 
auditor conveys. It also implies a nuanced link between transaction complexity and the auditor’s 
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communication strategy. Normally researchers do not observe auditor–client communications. 
However, insofar as the auditor’s expertise improves the accuracy of financial statements, fi­
nancial reporting quality measures—such as restatements—may serve as proxies for the depth 
of auditor–manager communication. Auditor independence could be proxied by high non-audit 
fees or extended auditor tenure (DeFond and Zhang, 2014). Hoitash and Hoitash (2018) propose a 
measure of accounting reporting complexity based on 10-K filings, and the measure could proxy for 
transaction complexity.20 In addition, principles-based versus rules-based accounting standards 
could proxy for the degree of information asymmetry between auditor and manager (Caplan and 
Kirschenheiter, 2004; Folsom et al., 2017). Principles-based standards require more judgment and 
estimation, and thus create greater information asymmetry. Relating these proxies to reporting 
quality measures could shed light on the role of auditor–manager communication in financial 
reporting.

20See also Chychyla et al. (2019) for a study examining how reporting complexity relates to reporting outcomes 
and auditor expertise.
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Figure 4: Comparative Statics: Normal Distribution

Note: The figure illustrates the comparative statics for normal distributions, 𝒩(𝜇, 𝜎 2
𝜃 ). The top panels plot the amount 

of information against 𝜋𝑅; the bottom panels against 𝜎𝜃. The amount of information is normalized by the prior 
variance, so that it ranges from 0 to 1. In the top panels, the low-mean case is 𝒩(−0.5, 1) and the high-mean case is 
𝒩(0.5, 1). In the bottom panels, the low and high means are again −0.5 and 0.5, respectively, with 𝜋𝑅 = 1 fixed.

32



8 Conclusion

A gatekeeper is a unique institution characterized by veto power without direct control over the 
agent they oversee. Often the gatekeeper has expertise and seeks to guide the agent’s decisions. 
Yet veto power alone cannot ensure that the agent acts in her interest. I develop a theory of a 
gatekeeping expert’s dilemma: she wants to guide the agent with her expertise, but sharing too 
much knowledge invites gaming. She resolves the dilemma by speaking vaguely—partitioning her 
information to guide decisions without revealing too much. By leaving just enough uncertainty, 
she deters gaming while still influencing the agent’s actions. The paper thus offers a theory of 
influence not through command, but through the strategic use of vagueness.
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Appendix

A Proofs
This section provides the proofs of the results described in the main text.

Proof of Lemma 1
If 𝑏 ≤ −𝜋𝑅, then 𝐴(𝑟) = 0 for all 𝑟 ≥ 0, and the unique solution to Report(𝑎, 𝑏) is 𝑟 = 0. Thus, 
assume that 𝑏 > −𝜋𝑅. I consider two cases, depending on whether 𝑏 − 𝑎 > 2𝜋𝑅 or not.

Case 1. 𝑏 − 𝑎 > 2𝜋𝑅

In this case, the acceptance probability 𝐴(𝑟) is given by

𝐴(𝑟) =
⎧

⎨
⎩

𝑎𝐹𝑏(𝑟 + 𝜋𝑅) 𝑟 ∈ [𝑎 − 𝜋𝑅, 𝑎 + 𝜋𝑅)

𝑎𝐹𝑏(𝑟 + 𝜋𝑅) − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) 𝑟 ∈ [𝑎 + 𝜋𝑅, 𝑏 − 𝜋𝑅]
1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) 𝑟 ∈ (𝑏 − 𝜋𝑅, 𝑏 + 𝜋𝑅].

(17)

Since 𝐴(𝑟) is increasing in 𝑟 on [𝑎 − 𝜋𝑅, 𝑎 + 𝜋𝑅), the solution to Report(𝑎, 𝑏) is at least 𝑎 + 𝜋𝑅. 
On the region 𝑟 ≥ 𝑎 + 𝜋𝑅, the acceptance probability is 𝐴(𝑟) = 𝑎𝐹𝑏(min{𝑟 + 𝜋𝑅, 𝑏}) − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅). 
Since the function 𝐴(𝑟) has a kink at 𝑟 = 𝑏 − 𝜋𝑅, simply solving the first-order condition of 
max 𝑟𝐴(𝑟) is not sufficient to characterize the solution. I thus consider each of the smooth functions 
𝑎𝐹𝑏(𝑟 + 𝜋𝑅) − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) and 𝑎𝐹𝑏(𝑏) − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) separately. I first prove the result assuming that 
𝑓 is strictly log-concave. Then I will return to the case in which 𝑓 is only weakly log-concave.

Consider the following relaxed maximization problems:

max
𝑟≥0

𝑟 [
𝐹 (𝑟 + 𝜋𝑅) − 𝐹(𝑟 − 𝜋𝑅)

𝐹 (𝑏) − 𝐹(𝑎)
] , max

𝑟≥0
𝑟 [

𝐹 (𝑏) − 𝐹(𝑟 − 𝜋𝑅)
𝐹 (𝑏) − 𝐹(𝑎)

] .

Note that the problems do not restrict 𝑟 to be in the corresponding region for each case of (17).21 
The first-order condition of each problem reduces to the following fixed-point equations:

𝑟 = ℎ1(𝑟) ≔
𝐹(𝑟 + 𝜋𝑅) − 𝐹(𝑟 − 𝜋𝑅)
𝑓 (𝑟 − 𝜋𝑅) − 𝑓 (𝑟 + 𝜋𝑅)

, 𝑟 = ℎ2(𝑟) ≔
𝐹(𝑏) − 𝐹(𝑟 − 𝜋𝑅)

𝑓 (𝑟 − 𝜋𝑅)
.

Routine arguments based on log-concavity show that ℎ2 is monotonically decreasing in 𝑟 ≤ 𝑏 + 𝜋𝑅
(see, e.g., Bagnoli and Bergstrom, 2005). Thus, ℎ2 admits a unique fixed point 𝑟+2 ∈ (0, 𝑏 + 𝜋𝑅)
satisfying 𝑟+2 = ℎ2(𝑟+2 ). The function ℎ1 need not be monotone, as 𝑓 is in general not strictly 
decreasing everywhere. But strict log-concavity guarantees that there is a region where it is 
strictly decreasing:

21In addition, unlike (17), the acceptance probability is nonzero for the entire support of 𝑋, not just on [𝑎, 𝑏].
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Claim 1. The function 𝑟 ↦ 𝑓 (𝑟 − 𝜋𝑅) − 𝑓 (𝑟 + 𝜋𝑅) has a unique root 𝑟̂.

 Proof. Define 𝑤(𝑟) ≔ 𝑔(𝑟 − 𝜋𝑅) − 𝑔(𝑟 + 𝜋𝑅), where 𝑔(𝑟) = log 𝑓(𝑟). The root of 𝑤 coincides with 
that of 𝑓 (𝑟 − 𝜋𝑅) − 𝑓 (𝑟 + 𝜋𝑅). Strict log-concavity implies that 𝑤 ′(𝑟) = 𝑔′(𝑟 − 𝜋𝑅) − 𝑔′(𝑟 + 𝜋𝑅) > 0. 
Hence, 𝑤 has a unique root. ∎

Therefore, ℎ1(𝑟) > 0 for 𝑟 > 𝑟̂, and lim𝑟↓𝑟̂ ℎ1(𝑟) = ∞. Strict log-concavity then ensures that 
ℎ1 is monotonically decreasing for 𝑟 ≥ 𝑟̂ and admits a unique fixed point 𝑟+1 = ℎ1(𝑟+1 ) in that region.

Now we turn to the original problem max𝑟 𝑟𝐴(𝑟). Suppose that 𝑟+1 > 𝑟+2  is true. Then, from 
the first-order conditions, the problem has a unique solution:

𝑟∗ =

⎧
⎪

⎨
⎪
⎩

𝑎 + 𝜋𝑅 if 𝑟+1 < 𝑎 + 𝜋𝑅

𝑟+1 if 𝑟+1 ∈ [𝑎 + 𝜋𝑅, 𝑏 − 𝜋𝑅]
𝑏 − 𝜋𝑅 if 𝑟+2 ≤ 𝑏 − 𝜋𝑅 < 𝑟+1
𝑟+2 if 𝑟+2 > 𝑏 − 𝜋𝑅.

(18)

Thus it suffices to show that 𝑟+1 > 𝑟+2 .

Claim 2. For 𝑟 ∈ (𝑟̂, ∞), we have ℎ1(𝑟) > ℎ2(𝑟).

 Proof. Rewrite the difference as

ℎ1(𝑟) − ℎ2(𝑟) =
[𝐹(𝑏) − 𝐹(𝑟 − 𝜋𝑅)] /𝑓 (𝑟 − 𝜋𝑅) − [𝐹(𝑏) − 𝐹(𝑟 + 𝜋𝑅)] /𝑓 (𝑟 + 𝜋𝑅)

(𝑓 (𝑟 − 𝜋𝑅) − 𝑓 (𝑟 + 𝜋𝑅))/𝑓 (𝑟 + 𝜋𝑅)
.

Since 𝑟 > 𝑟̂, the denominator of the expression is positive. Log-concavity implies that the function 
𝑥 ↦ (𝐹(𝑏) − 𝐹(𝑥))/𝑓 (𝑥) is strictly decreasing in 𝑥 ≤ 𝑏. Thus the numerator is positive as well. ∎

This result implies that ℎ1(𝑟+1 ) = 𝑟+1 > ℎ2(𝑟+1 ). Since 𝑟 − ℎ2(𝑟) is strictly increasing, we 
conclude that 𝑟+1 > 𝑟+2 .

Finally, return to the case in which 𝑓 is only weakly log-concave. The previous analysis of 
ℎ2 only requires weak log-concavity; thus max 𝑟(1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅)) still admits a unique maximizer 
𝑟+2 . The analysis of ℎ1 needs a minor modification. Let 𝑟 be the largest root of 𝑓 (𝑟 − 𝜋𝑅) − 𝑓 (𝑟 + 𝜋𝑅). 
By the continuity of the mapping, ℎ1(𝑟) admits a unique fixed point 𝑟+1  on (𝑟, ∞). Define

𝑟+1 ≔ {
𝑟+1 if 𝑟 < ∞
∞ otherwise.

The second case applies if 𝑓 is constant everywhere (i.e., uniform distribution). The first-order 
condition implies that (18) still holds with this modified definition of 𝑟+1 .

Case 2. 𝑏 − 𝑎 ≤ 2𝜋𝑅

In this case, the acceptance probability is either 1 or 1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅) for all 𝑟 ≥ 𝑎 + 𝜋𝑅. The relaxed 
problem max𝑟≥0 𝑟(1 − 𝑎𝐹𝑏(𝑟 − 𝜋𝑅)) is exactly the same as in the previous case. Thus, the solution 
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to the original problem max𝑟 𝑟𝐴(𝑟) is

𝑟∗ = {
𝑎 + 𝜋𝑅 if 𝑟+2 < 𝑎 + 𝜋𝑅

𝑟+2 if 𝑟+2 ≥ 𝑎 + 𝜋𝑅,

where 𝑟+2  is defined in the previous case (i.e., the unique fixed point of 𝑟 = ℎ2(𝑟)). ∎

Figure A.1: Illustration of the Proof (𝑏 − 𝑎 > 2𝜋𝑅)

Note: The figure illustrates the proof for the case 𝑏 − 𝑎 > 2𝜋𝑅. The curves plot the objective function of the relaxed 
problem, scaled by 𝐹(𝑏) − 𝐹(𝑎). The curves are solid for the corresponding region of (17), and dashed otherwise. The 
solid vertical lines represent the solution to the reporting problem, 𝑟∗.
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Proof of Proposition 1
An optimal silence set satisfies

min
𝒳0

ℙ(𝑋 ∈ 𝒳0)𝔼[min{|𝑟0 − 𝑋|, 𝜋𝑅}2 ∣ 𝑋 ∈ 𝒳0] + ℙ(𝑋 ∉ 𝒳0)(𝜋𝑅)2 (19)

s.t. |𝑋 − 𝑟0| ≥ 𝜋𝑅 for all 𝑋 ∉ 𝒳0.

In the online supplementary material, I show that any equilibrium silence set is a connected 
set (Lemma C.1). Thus, 𝒳0 = [𝑎, 𝑏] for some 𝑎 < 𝑏, and (19) reduces to a two-dimensional 
constrained optimization. In the proof below, I reduce the optimization problem further to that of 
𝑏 by showing that 𝑎 = 𝑋 without loss. Then I show that 𝑏 = 𝑋 achieves the optimal value.

 Proof. Step 1. 𝑎 = 𝑋 without loss.  Let 𝒳0 = [𝑎, 𝑏] for some 𝑎 and 𝑏 such that 𝑋 ≤ 𝑎 < 𝑏 ≤ 𝑋. The 
explicit solution to Report(𝑎, 𝑏) is given by (9). If 𝑏 − 𝑎 ≤ 2𝜋𝑅, then we have 𝑟∗ + 𝜋𝑅 > 𝑏, violating 
the equilibrium constraint (11). Thus, 𝑏 − 𝑎 > 2𝜋𝑅 is necessary for an equilibrium. The solution 𝑟∗
then does not depend on 𝑎. Expanding the silence set only improves the auditor’s expected payoff 
when the report is fixed, so 𝑎 = 𝑋 without loss.

Step 2. Optimality of 𝑏 = 𝑋.  Under 𝑎 = 𝑋, the auditor’s expected loss is given by

ˆ 𝑏

𝑟0−𝜋𝑅
(𝑟0 − 𝑥)2

1
𝑋 − 𝑋

𝑑𝑥 + [
𝑟0 − 𝜋𝑅 − 𝑋

𝑋 − 𝑋
+

𝑋 − 𝑏
𝑋 − 𝑋

] (𝜋𝑅)2.

If 𝑏 < 3𝜋𝑅, then 𝑟∗ + 𝜋𝑅 = (𝑏 + 3𝜋𝑅)/2 > 𝑏, violating the equilibrium constraint (11). Thus, only 
𝑏 ≥ max{3𝜋𝑅, 𝑋 + 2𝜋𝑅} are feasible, and 𝑟0 = 𝑏 − 𝜋𝑅 Without loss, I can assume that the right-hand 
side is smaller than 𝑋.22 The auditor-optimal equilibrium satisfies

min
𝑏≥max{3𝜋𝑅,𝑋+2𝜋𝑅}

ˆ 𝑏

𝑏−2𝜋𝑅
(𝑏 − 𝜋𝑅 − 𝑥)2𝑑𝑥 + (𝑋 − 𝑋 − 2𝜋𝑅)(𝜋𝑅)2.

The first integral term simplifies to 2(𝜋𝑅)3/3, so the objective function is constant in 𝑏. Therefore, 
𝑏 = 𝑋 achieves the optimum, and 𝒳0 = [𝑋, 𝑋] is a solution to (19). ∎

Proof of Lemma 2
Before proving Lemma 2, I first show that Γ𝐺(𝑏) in (12) is well-defined. Let 𝒢(𝑏) ≔ {𝑎 ≥ 𝑋 ∣ 𝑎 <
𝑏 and |𝑟 ([𝑎, 𝑏]) − 𝑋 | ≤ 𝜋𝑅, ∀𝑋 ∈ [𝑎, 𝑏]} be the set of left endpoints such that the manager’s report 
under Report(𝑎, 𝑏) is always acceptable, conditional on the message 𝐷 = [𝑎, 𝑏]. If 𝑏 ≤ −𝜋𝑅, then 
the manager’s report is at most 𝑟 = 0, so there is no message that guarantees acceptance. Thus I 
focus on the case 𝑏 > −𝜋𝑅.

22Otherwise 𝑏 = 𝑋 is the only feasible equilibrium, and the proof is complete.
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Lemma A.1.  Suppose that 𝑏 > −𝜋𝑅. Then, for any 𝑏 > 𝑋, the set 𝒢(𝑏) is nonempty, and min𝒢(𝑏)
exists.

 Proof. Consider a message [𝑎, 𝑏] for a fixed 𝑏 > −𝜋𝑅. From (5) and (17), it is necessary that 
𝑏 − 𝑎 ≤ 2𝜋𝑅 to ensure that the induced report 𝑟([𝑎, 𝑏]) is acceptable with probability one. Moreover, 
to ensure that the manager chooses the safe option (i.e., 𝑟∗ = 𝑎 + 𝜋𝑅), we require (see the proof of 
Lemma 1)

𝜕
𝜕𝑟

[𝑟(1 − 𝐹[𝑎,𝑏](𝑟 − 𝜋𝑅))]
𝑟=𝑎+𝜋𝑅

≤ 0,

or equivalently,

𝑎 + 𝜋𝑅 ≥
𝐹(𝑏) − 𝐹(𝑎)

𝑓 (𝑎)
. (20)

I show that there exists a unique threshold Γ𝐺(𝑏) such that (20) holds if and only if 𝑎 ≥ Γ𝐺(𝑏). 
The right-hand side of (20) is strictly decreasing in 𝑎 by the log-concavity of 𝑓. In the limit 𝑎 ↑ 𝑏, 
the inequality (20) is satisfied due to 𝜋𝑅 > 0. In the limit 𝑎 ↓ −𝜋𝑅, the inequality is violated 
due to the positivity of the right-hand side. Therefore, there is a unique Γ𝐺(𝑏) < 𝑏 such that 
Γ𝐺(𝑏) + 𝜋𝑅 = (𝐹(𝑏) − 𝐹(Γ𝐺(𝑏)))/𝑓 (Γ𝐺(𝑏)), and we can take min𝒢(𝑏) = max{Γ𝐺(𝑏), 𝑏 − 2𝜋𝑅} < 𝑏, 
proving the lemma. ∎

Define Γ(𝑏) ≔ min𝒢(𝑏) = max{Γ𝐺(𝑏), 𝑏 − 2𝜋𝑅}. Lemma 2 can now be restated as follows.

Lemma 2′.  In an auditor-optimal equilibrium, any on-path message [𝑎, 𝑏] ⊂ [𝑋, 𝑋] satisfies 𝑎 ≥ Γ(𝑏)
for all 𝑏 > −𝜋𝑅. If 𝑏 ∈ (𝑋, −𝜋𝑅], then it is without loss to set 𝑎 = 𝑋.

 Proof. To prove the first part, take any 𝑏 > −𝜋𝑅. Fix any auditor-optimal communication strategy 𝜎. 
Toward a contradiction, suppose that 𝑎 < Γ(𝑏). Assume without loss that 𝑋 ≤ min{𝑏−2𝜋𝑅, Γ𝐺(𝑏)}.23 
The hypothesis implies that either (i) 𝑏 − 𝑎 > 2𝜋𝑅 or (ii) 𝑏 − 𝑎 ≤ 2𝜋𝑅 and 𝑎 < Γ𝐺(𝑏).

In either case, the manager reports 𝑟∗ ≔ 𝑟([𝑎, 𝑏]) > 𝑎 + 𝜋𝑅, where 𝑟∗ is defined in (18). 
Any 𝑋 ∈ [𝑎, 𝑟∗ − 𝜋𝑅] results in rejection. Construct an alternative auditor strategy 𝜎 ′ that differs 
from 𝜎 only on [𝑎, 𝑏] by splitting it into two intervals: [𝑎, 𝑟∗ − 𝜋𝑅] and [𝑟∗ − 𝜋𝑅, 𝑏]. Under the new 
strategy 𝜎 ′, the manager’s report given [𝑟∗ − 𝜋𝑅, 𝑏] remains at 𝑟∗. This is because the upper bound 
of the message remains 𝑏, and the report 𝑟∗ is still feasible under the new message [𝑟∗ − 𝜋𝑅, 𝑏].24 
Thus any 𝑋 ∈ [𝑟∗ − 𝜋𝑅, 𝑏] results in the same payoffs for the auditor. When 𝑋 ∈ [𝑎, 𝑟∗ − 𝜋𝑅], the 
manager’s report changes from 𝑟∗ but is accepted with some positive probability. Therefore, the 
auditor’s expected payoff on [𝑎, 𝑏] is strictly higher under 𝜎 ′, contradicting the optimality of the 
original strategy 𝜎.

To prove the second part, suppose that (𝑋, −𝜋𝑅] is non-degenerate and fix any 𝑏 ∈ (𝑋, −𝜋𝑅]. 
For any 𝑎 < 𝑏, the manager’s report 𝑟([𝑎, 𝑏]) is zero. Moreover, |𝑋 −0| ≥ 𝜋𝑅 for all 𝑋 ≤ 𝑏. Therefore, 
any 𝑎 < 𝑏 gives the same expected loss as 𝑎 = 𝑋. ∎

The above argument establishes a sufficient condition for the manager’s report to be 
acceptable with probability one:

23If Γ(𝑏) = 𝑋, then 𝑎 < Γ(𝑏) would be impossible.
24That is, (𝑟∗ − 𝜋𝑅) + 𝜋𝑅 ≥ 𝑟∗, so the risky option is in [𝑟∗ − 𝜋𝑅, 𝑏].
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Corollary A.1.  Suppose that 𝑋 ≥ −𝜋𝑅. Then, in any auditor-optimal outcome, the manager’s report 
is acceptable with probability one.

When this sufficient condition does not hold, then it is without loss to bundle all realizations 
𝑋 < 𝜋𝑅 as a single message.

Corollary A.2.  Suppose that 𝑋 < −𝜋𝑅. Then, in any auditor-optimal equilibrium, it is without loss 
to let the smallest message be [𝑋, −𝜋𝑅], which induces an unacceptable report with probability one.

Consequently, when 𝑋 ≥ −𝜋𝑅, we can safely ignore the smallest message [𝑋, −𝜋𝑅] and focus 
instead on the partition that induces acceptable reports with probability one over the remaining 
support.

Proof of Lemma 3
 Proof. Define ℎ(𝑏) ≔ Γ𝐺(𝑏) − (𝑏 − 2𝜋𝑅). I show that lim𝑏↓−𝜋𝑅 ℎ(𝑏) > 0 and that ℎ is monotonically 

decreasing in 𝑏. To establish the first claim, recall from Lemma A.1 that Γ𝐺(𝑏) is the unique 𝑎 that 
solves 𝑎 + 𝜋𝑅 = (𝐹(𝑏) − 𝐹(𝑎))/𝑓 (𝑎). Since 𝑎 ∈ (−𝜋𝑅, 𝑏), the solution Γ𝐺(𝑏) tends to −𝜋𝑅 as 𝑏 ↓ −𝜋𝑅. 
Therefore lim𝑏↓−𝜋𝑅 ℎ(𝑏) = 2𝜋𝑅 > 0.

To prove that ℎ is decreasing, it suffices to show that 𝜕Γ𝐺/𝜕𝑏 < 1. Observe that

𝜕Γ𝐺(𝑏)
𝜕𝑏

=
𝑓 (𝑏)/𝑓 (𝑎)

1 − 𝜕
𝜕𝑎

𝐹(𝑏)−𝐹(𝑎)
𝑓 (𝑎)

=
𝑓 (𝑏)

2𝑓 (𝑎) + (𝐹(𝑏) − 𝐹(𝑎))𝑓
′(𝑎)
𝑓 (𝑎)

. (21)

Let 𝑔(𝑥) ≔ log 𝑓 (𝑥). Since 𝑓 is log-concave, 𝑔′(𝑥) ≤ 𝑔′(𝑎) for all 𝑥 ∈ [𝑎, 𝑏]. Therefore,

ˆ 𝑏

𝑎
𝑔′(𝑥)𝑓 (𝑥)𝑑𝑥 ≤ (𝐹(𝑏) − 𝐹(𝑎))𝑔′(𝑎).

Using 𝑔′(𝑥) = 𝑓 ′(𝑥)/𝑓 (𝑥), we can rewrite this as

𝑓 (𝑏) ≤ 𝑓 (𝑎) + (𝐹(𝑏) − 𝐹(𝑎))
𝑓 ′(𝑎)
𝑓 (𝑎)

.

Adding 𝑓 (𝑎) > 0 to the right-hand side of this inequality establishes that 𝜕Γ𝐺/𝜕𝑏 < 1 by (21). ∎

Proof of Theorem 1 and Off-Path Beliefs
First I prove Theorem 1 by showing that the auditor does not benefit from deviating to any off-path 
message. Then I discuss equilibrium refinements that justify such a belief.

Let 𝔐(𝐷) ≔ {𝑋 ∣ ℳ⁂(𝑋) ∋ 𝐷} denote the set of types who can also communicate 𝐷. In 
the model, each message is a subset of the support of 𝑋. As a useful consequence of this structure, 
we have 𝔐(𝐷) = 𝐷.25

25To see this, note that any type 𝑋 ∈ 𝐷 is permitted to communicate this fact, so 𝐷 ⊂ 𝔐(𝐷). Conversely, if 𝑋 ∉ 𝐷, 
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The manager’s belief is wishful if, for any off-path message 𝐷, the manager assigns proba­
bility one to 𝑋 = sup𝔐(𝐷) = sup𝐷. That is, the manager interprets any off-path message in the 
way most favorable to himself.

 Proof of Theorem 1. Suppose that the manager’s off-path belief is wishful. Let [𝑎, 𝑏] ∈ 𝒟∗ be a 
message in the optimal partition. Consider the auditor with realization 𝑋 ∈ [𝑎, 𝑏]. Take any off-
path message 𝐷 ∈ ℳ⁂(𝑋) such that 𝐷 ≠ [𝑎, 𝑏]. On the equilibrium path, the difference between 
the manager’s report and 𝑋 is |𝑟 ([𝑎, 𝑏]) − 𝑋 | ≤ 𝜋𝑅. If the auditor deviates to 𝐷, then the manager’s 
wishful off-path belief 𝐵(𝐷) assigns probability one to 𝑋 = sup𝐷. Therefore, the manager reports 
𝑟(𝐷) = sup𝐷 + 𝜋𝑅. After the deviation, the difference between the report and 𝑋 is then

|𝑟 (𝐷) − 𝑋 | = | sup𝐷 + 𝜋𝑅 − 𝑋|
= sup𝐷 + 𝜋𝑅 − 𝑋 ≥ 𝜋𝑅,

where the second line is from 𝐷 ∋ 𝑋. Therefore, for any message 𝐷 ∈ 𝒟∗ and 𝑋 ∈ 𝐷, the auditor 
does not have a profitable deviation to any off-path message. ∎

Equilibrium Refinement

A natural question is whether the assumption of the wishful off-path belief is “reasonable.” Here I 
show that such a belief survives the Grossman-Perry-Farrell criterion, a common refinement used 
in the truthful communication literature (Bertomeu and Cianciaruso, 2018; Glode et al., 2018).26 In 
particular, the technique developed in Glode et al. (2018) applies to the current setting as well.

Definition A.1. A PBE ⟨𝜎 , 𝑟 , 𝛼, 𝐵⟩ is a Grossman-Perry-Farrell equilibrium (GPFE) if no non-empty 
interval 𝐷self ⊂ [𝑋, 𝑋] exists such that all types 𝑋 ∈ 𝐷self strictly benefit from deviating to the 
message 𝐷self, assuming the receiver’s belief upon deviation, 𝐵(𝐷self), is the posterior distribution 
of 𝑋 conditional on 𝑋 ∈ 𝐷self.

Intuitively, the GPFE refinement rules out the following scenario. Suppose type 𝑋 ∈ 𝐷self

deviates to the message 𝐷self, and the manager believes that only types in 𝐷self would do so. If the 
manager’s belief is self-fulfilling—all types 𝐷self indeed wish to deviate to the message 𝐷self—then 
we have found a pair of “reasonable” off-path deviation and belief: the auditor’s message that she 
is in 𝐷self is, in this sense, credible.

Proposition A.1.  An auditor-optimal equilibrium is a GPFE.

 Proof. Let 𝜎 be an equilibrium communication strategy inducing the auditor-optimal partition. If 
there is a self-signaling set 𝐷self, an alternative communication strategy 𝜎 ′ that differs from 𝜎 only 
on 𝐷self by assigning the message 𝐷self to all 𝑋 ∈ 𝐷self strictly improves the auditor’s expected 
payoff. This contradicts the optimality of 𝜎, because 𝜎 ′ can be supported by the same belief system 
𝐵 in the original equilibrium. ∎

then truthful communication implies that type 𝑋 cannot use message 𝐷; thus 𝑋 ∉ 𝔐(𝐷).
26See Ali et al. (2024) for a related discussion on when a sender-optimal outcome is achieved in a disclosure game.
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The result justifies the wishful off-path belief in the sense that an auditor-optimal equilib­
rium supported by such a belief survives the standard equilibrium refinement. The GPFE criterion 
offers another justification for an auditor-optimal equilibrium by providing a partial converse of 
Proposition A.1.

Proposition A.2.  Consider an equilibrium in which the acceptance probability is not maximized 
(and thus not auditor-optimal). Then, the equilibrium is not a GPFE.

 Proof. Let 𝜎 be an equilibrium communication strategy under which the acceptance probability is 
not maximized. Then, there exists an on-path message 𝐷 = [𝑎, 𝑏] such that the set 𝐷+ ∪ 𝐷− has 
positive measure, where

𝐷+ ≔ {𝑋 ∈ 𝐷 ∣ 𝑟(𝐷) > 𝑋 + 𝜋𝑅, 𝑋 > −𝜋𝑅}
𝐷− ≔ {𝑋 ∈ 𝐷 ∣ 𝑟(𝐷) < 𝑋 − 𝜋𝑅, 𝑋 > −𝜋𝑅}.

Suppose that 𝐷+ is nondegenerate. Let 𝐷self ≔ (inf𝐷+, 𝑏) for some 𝑏 > inf𝐷+ such that inf𝐷+ ≥
Γ(𝑏). By Lemma 2′, the manager’s report in response to this message satisfies |𝑟 (𝐷self) − 𝑋 | < 𝜋𝑅. 
Since the auditor with realization 𝑋 ∈ 𝐷+ receives a constant payoff of −(𝜋𝑅)2 in equilibrium, 
𝐷self is a self-signaling set. A similar argument applies if 𝐷− is nondegenerate. ∎

Proof of Proposition 2
Assume without loss that 𝑋 > −𝜋𝑅 (see Corollaries A.1 and A.2).

The Equivalence of the Optimal Partition Problem and the Bellman Equation

I first show that the problem OP is equivalent to the Bellman equation (15). To do so, it is convenient 
to index a partition from the right (“negative indexing”). Let 𝒫 ([𝑋, 𝑑0]) be the set of all partitions 
of [𝑋, 𝑑0]. A partition 𝒟 ∈ 𝒫 ([𝑋, 𝑑0]) with the negative indexing is written as

𝒟 = ⋃
𝑖≥0

𝐷−𝑖, 𝐷−𝑖 ≔ [𝑑−𝑖−1, 𝑑−𝑖],

where 𝑖 is a non-negative integer and 𝑑0 ≥ 𝑑−1 ≥ 𝑑−2 ≥ ⋯.
For each message 𝐷−𝑖 = [𝑑−𝑖−1, 𝑑−𝑖], the constraint to ensure an acceptable report is

𝑑−𝑖−1 ∈ [Γ(𝑑−𝑖), 𝑑−𝑖),

Rewrite the problem OP for the truncated support [𝑋, 𝑑0] as27

inf
𝒟∈𝒫 ([𝑋,𝑑0])

∑
𝑖≥0

ℙ(𝑋 ∈ 𝐷−𝑖 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−𝑖−1, 𝑑−𝑖). (SP)

27When 𝑋 < ∞ we can set 𝑑0 = 𝑋, and the conditioning becomes redundant.
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Rewrite the Bellman equation (15) as

𝐿(𝑑0) = inf
𝑑−1∈[Γ(𝑑0),𝑑0]

ℙ(𝑋 ≥ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−1, 𝑑0) + ℙ(𝑋 ≤ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)𝐿(𝑑−1). (BE)

I demonstrate that the objective function of SP can be rewritten as the right-hand side of BE. Let 
Λ(𝒟) ≔ ∑𝑖≥0 ℙ(𝑋 ∈ 𝐷−𝑖 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−𝑖−1, 𝑑−𝑖) be the objective function. Then,

Λ(𝒟) = ℙ(𝑑−1 ≤ 𝑋 ≤ 𝑑0 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−1, 𝑑0) +∑
𝑖≥1

ℙ(𝑋 ∈ 𝐷−𝑖 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−𝑖−1, 𝑑−𝑖)

= ℙ(𝑋 ≥ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−1, 𝑑0) +
ℙ(𝑋 ≤ 𝑑−1)
ℙ(𝑋 ≤ 𝑑0)

∑
𝑖≥1

ℙ(𝑋 ∈ 𝐷−𝑖 ∣ 𝑋 ≤ 𝑑−1)ℓ(𝑑−𝑖−1, 𝑑−𝑖)

= ℙ(𝑋 ≥ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−1, 𝑑0) + ℙ(𝑋 ≤ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)Λ(𝑑−1),

where the first equality follows from isolating the initial term, the second from the monotonicity 
of the sequence {𝑑𝑖} and Bayes’ rule, and the third from the definition of Λ. Therefore, the solution 
sets to BE and SP coincide, following the arguments in Stokey et al. (1989, Chap. 4).

Contraction Property

Now I show that there is a unique fixed point of the Bellman operator associated with BE. Let 
𝒞𝐵([𝑋, 𝑋]) denote the space of bounded continuous functions on [𝑋, 𝑋], endowed with the supre­
mum norm ‖ ⋅ ‖∞. Define the Bellman operator 𝑇 ∶ 𝒞𝐵([𝑋, 𝑋]) → 𝒞𝐵([𝑋, 𝑋]) by

𝑇𝐿(𝑑0) ≔ min
𝑑−1∈[Γ(𝑑0),𝑑0]

ℙ(𝑋 ≥ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)ℓ(𝑑−1, 𝑑0) + ℙ(𝑋 ≤ 𝑑−1 ∣ 𝑋 ≤ 𝑑0)𝐿(𝑑−1),

and let 𝜆(𝑑0) denote the minimizer in the above expression. It suffices to show that 𝑇 is a contraction 
mapping (cf. Stokey et al., 1989). To do so, I first establish a uniform upper bound on the probability 
term.

Lemma A.2.  There exists 𝛽 ∈ (0, 1) such that ℙ(𝑋 ≤ 𝜆(𝑑0) ∣ 𝑋 ≤ 𝑑0) ≤ 𝛽 for all 𝑑0 ∈ (𝑋, 𝑋].

 Proof. The result holds trivially if 𝑋 < ∞, so assume 𝑋 = ∞. Toward a contradiction, suppose that

lim
𝑑0→∞

ℙ(𝑋 ≤ 𝜆(𝑑0) ∣ 𝑋 ≤ 𝑑0) = 1.

Take any 𝜀 > 0. There exists 𝑑 such that ℙ(𝑋 ≤ 𝜆(𝑏) ∣ 𝑋 ≤ 𝑏) ≥ 1 − 𝜀 for all 𝑏 ≥ 𝑑. Since 𝜀 > 0 is 
arbitrary and the density vanishes at infinity, we may take 𝑑 such that 𝑏 − 𝜆(𝑏) < 𝜋𝑅 and 𝜆(𝑏) > 𝑑
for all 𝑏 > 𝑑. Then, for any 𝑏 > 𝑑, the manager’s report 𝑟([𝜆(𝑏), 𝑏]) = 𝜆(𝑏) + 𝜋𝑅 strictly exceeds 
𝑋 ∈ [𝜆(𝑏), 𝑏]. The auditor’s conditional expected loss ℓ(𝜆(𝑏), 𝑏) = 𝔼[(𝜆(𝑏)+𝜋𝑅−𝑋)2 ∣ 𝑋 ∈ [𝜆(𝑏), 𝑏]]
could be strictly reduced by merging the message [𝜆(𝑏), 𝑏] with the next adjacent interval to the 
left. This contradicts the optimality of 𝜆(𝑏). ∎

Now I prove that 𝑇 is a contraction mapping, which effectively proves Proposition 2.

 Proof of Proposition 2. Let 𝐿1, 𝐿2 ∈ 𝒞𝐵([𝑋, 𝑋]) be arbitrary, and let 𝜆1(𝑑0) and 𝜆2(𝑑0) denote their 
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corresponding minimizers. Then for 𝑘 ∈ 1, 2 and 𝑘′ ≠ 𝑘,

(𝑇𝐿𝑘)(𝑑0) ≤ ℙ(𝑋 ≥ 𝜆𝑘′(𝑑0) ∣ 𝑋 ≤ 𝑑0)ℓ(𝜆𝑘′(𝑑0), 𝑑0) + ℙ(𝑋 ≤ 𝜆𝑘′(𝑑0) ∣ 𝑋 ≤ 𝑑0)𝐿𝑘(𝜆𝑘′(𝑑0)).

Therefore,

|𝑇 𝐿1 − 𝑇𝐿2|(𝑑0) ≤ max
𝑘∈{1,2}

ℙ(𝑋 ≤ 𝜆𝑘(𝑑0) ∣ 𝑋 ≤ 𝑑0)‖𝐿1 − 𝐿2‖∞

≤ 𝛽‖𝐿1 − 𝐿2‖∞,

where the second line is from Lemma A.2. Taking the supremum over 𝑑0 gives ‖𝑇𝐿1 − 𝑇𝐿2‖∞ ≤
𝛽‖𝐿1 − 𝐿2‖∞, so 𝑇 is a contraction. ∎

Proof of Proposition 3
 Proof. Let 𝑋 > 0 and define

ℓ ∶ ℝ++ × (0, 𝑋) ∋ (Δ, 𝜋𝑅) ↦ (𝜋𝑅)2 − 𝜋𝑅Δ + (Δ)2/3 ∈ ℝ,

which gives the auditor’s expected loss when each interval has length Δ. The feasible set of interval 
lengths is

𝑆(𝜋𝑅) ≔ {Δ > 0 ∣ Δ ≤ 2𝜋𝑅, Δ = (𝑋 − 𝑋)/𝑁 for some 𝑁 ∈ ℕ}.

With this notation, the optimal partition problem (14) can be rewritten as

min
Δ∈𝑆(𝜋𝑅)

ℓ(Δ; 𝜋𝑅). (22)

It suffices to show that the solution to (22) is weakly increasing in 𝜋𝑅. Results from 
Monotone Comparative Statics offer a simple way to verify this. Note ℓ has strictly decreasing 
differences in (Δ, 𝜋𝑅), since 𝜕2ℓ

𝜕𝜋𝑅𝜕Δ = −1. The feasible set 𝑆(𝜋𝑅) is increasing in 𝜋𝑅 in the strong set 
order. Therefore, every selection from the solution set of (22) is weakly increasing in 𝜋𝑅 (Topkis, 
1978; Milgrom and Shannon, 1994).28 ∎

Remark A.1. In the proof, the monotonicity is established for an arbitrary selection of the 
solution correspondence, because the problem (22) may have multiple solutions. In particular, 
when Δideal = 1.5𝜋𝑅 is in the middle of some interval [(𝑋 − 𝑋)/𝑁 , (𝑋 − 𝑋)/𝑁 ′], then the auditor 
is indifferent between 𝑁 and 𝑁 ′ partitions as long as they are both feasible.

B Other Applications
I discuss several additional applications of my model. For each setting, I sketch how the model 
applies and outline the potential insights it offers. The settings I consider are bank stress testing, 

28Since ℓ(⋅; 𝜋𝑅) is defined on a chain, it is trivially quasi-supermodular.
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capital budgeting, environmental regulation, and patent examination.

Bank Stress Testing Banks in the U.S. are subject to periodic stress tests by the Federal Reserve. 
The tests evaluate whether banks can withstand adverse economic scenarios. An important policy 
question is how transparent the regulator should be about the models it uses in these tests (Leitner 
and Williams, 2023).29 The regulator faces the gatekeeping expert’s dilemma: being too transparent 
may lead banks to game the system, while being too opaque may leave them unprepared for adverse 
scenarios as they do not understand the regulator’s concerns. Indeed, the regulator has repeatedly 
raised this concern (Tarullo, 2016; Barr, 2025).

To apply my framework to this setting, consider a bank preparing for an upcoming stress 
test. The bank must choose its level of risk-taking, denoted by 𝑟. A higher 𝑟 may reflect actions such 
as holding less capital, lending to riskier borrowers, or extending the maturity of long-duration 
bond holdings. The regulator, drawing on internal stress test models and macroeconomic forecasts, 
knows the bank’s optimal risk level, denoted by 𝑋. The bank, by contrast, has an incentive to take 
on more risk (i.e., a higher 𝑟) in order to boost returns, possibly due to the “too-big-to-fail” problem 
(Strahan, 2013).

Before the stress test, the regulator may choose to communicate aspects of its stress tests—
such as the test scenarios, model parameters, or the timing of the test. By doing so, the regulator 
would like to discipline the bank’s choice of 𝑟. The goal of such communication is to discipline the 
bank’s choice of 𝑟. Ultimately, the regulator either passes or fails the bank based on its risk profile 
𝑟 and the regulator’s private information 𝑋.

Leitner and Williams (2023) analyze the tradeoff between transparency and secrecy in 
stress testing. They show that regulators benefit from disclosing some information when they can 
optimally set the test threshold. My framework complements their findings by examining a setting 
in which the regulator cannot commit to a pass/fail threshold in advance. In this environment, 
vague communication can serve as a disciplinary tool. The comparative statics in my model yield 
new insights into how the regulator’s independence and expertise shape its degree of secrecy. The 
model also offers a potential explanation for why most banks pass the stress tests:30 the regulator 
chooses an appropriate level of “model secrecy” to ensure that banks select appropriate risk levels 
without resorting to costly failures of the tests.

Bottom-Up Capital Budgeting Consider a capital budgeting process within a firm. While 
budgetary practices vary across organizations, one common approach is bottom-up budgeting, 
in which operating units prepare capital investment proposals for approval by a central capital 
budgeting committee (Shim and Siegel, 2005). The budgeting committee reviews these proposals 
and decides whether to approve or reject them. It also sets key approval parameters, such as hurdle 
rates (Ross, 1986).

29Another issue of transparency is whether the regulator should disclose the tests results. The key tradeoff in that 
context is distinct from the transparency vis-à-vis banks I discuss here. See Goldstein and Sapra (2014) and Goldstein 
and Leitner (2022) for reviews on stress tests disclosure.

30For example, in the 2025 tests, all 22 participating banks passed. See https://www.federalreserve.gov/
supervisionreg/stress-tests-capital-planning.htm for the past test results.
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To model this situation, consider a large manufacturing company with a bottom-up budget­
ing approach, where division managers routinely propose capital investment projects. A manager 
is offered a potential technology investment by a vendor. The new technology would replace 
aging equipment and improve efficiency. The manager requests resources 𝑟 from the company’s 
headquarters to fund the project. Because the project requires a large capital outlay, it must be 
approved by the capital budgeting committee (Ross, 1986).

The committee comprises experts, including current facility managers with domain ex­
pertise in the relevant technology and operations. When the manager submits a proposal, the 
committee can advise on what it deems to be the optimal investment level, denoted by 𝑋. Shim and 
Siegel (2005) note that one function of a budgeting committee is to provide advice. Suppose that if 
the committee rejects the initial proposal, submitting a revised one is too costly. For example, the 
company has limited capital to allocate; if the project is rejected, the committee may instead fund 
competing proposals. Alternatively, the vendor may walk away and go to competitors.

The key premise is the agency problem: the headquarters cannot execute the project itself, 
and the manager derives private benefits from the allocated resources (Stein, 1997). The literature 
has extensively examined how information asymmetry and agency problems influence capital 
budgeting (Harris et al., 1982; Antle and Eppen, 1985; Baiman and Sivaramakrishnan, 1991; Harris 
and Raviv, 1998; Gervais et al., 2011; Almazan et al., 2017). For example, in a principal-agent 
framework, Baiman and Sivaramakrishnan (1991) show that giving the manager more pre-decision 
information may exacerbate the agency problem, making the principal (e.g., headquarters) worse 
off. My model complements this insight by showing that the capital budgeting committee can 
optimally utilize vague communication to mitigate the agency problem in a setting where the 
principal only has veto power.

Environmental Regulation Consider a firm that wants to open a production facility. The 
firm must file a permit application that specifies the details of the production plan, including an 
allowable emissions cap 𝑟. The environmental regulator (e.g., the EPA) reviews the application 
and decides to approve or reject it.31 If the regulator rejects, the facility cannot be opened and the 
opportunity is lost.

The regulator is a gatekeeping expert. From years of monitoring many facilities, running 
dispersion models, and applying “best available” technology benchmarks, it can pin down the 
welfare-maximizing emissions cap 𝑋. The firm benefits from looser limits (higher 𝑟), because it can 
produce more products without costly abatement. The regulator may communicate guidance when 
the firm submits its application. This guidance can be precise or intentionally vague (e.g., “our 
modeling suggests your cap should be around 1-1.5t per day”). After seeing the plant’s proposal, 
the regulator either approves as filed (allocating the requested cap 𝑟) or rejects the application. 
The regulatory review is a time-consuming process, and there is effectively only one chance to get 
approval—going through the process again would be too costly for the firm.

In practice, environmental regulators often provide vague guidance. For example, take the 
enforcement of the Clean Water Act of 1972. A persistent challenge has been determining whether 
a given property falls under the Act’s jurisdiction. In the recent Supreme Court case Sackett v. 

31See Laffont and Tirole (1996a,b) for models of pollution permit allocation.
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EPA, the vagueness of the EPA’s jurisdictional test was challenged. During oral arguments, Justice 
Sotomayor captured the crux of the problem, asking, “But is there another test that could be 
more precise and less open-ended than the [...] test that you [the EPA] use?” The EPA’s vague 
communication may be a strategic choice: by avoiding a precise test, the agency preserves its 
gatekeeping discretion while still influencing property owners’ behavior.

More broadly, Blanchard et al. (2023) note that opaque environmental policies are frequently 
favored over clear, price-based regulations such as a carbon tax. My model provides a framework 
for understanding the strategic use of vague guidance in environmental regulation.

Patent Examination Consider a company that has developed a new technology. The company 
files a non-provisional application with a claim set that targets a broad exclusivity radius 𝑟 (e.g., 
claim breadth and coverage of variants). A patent examiner, who is an expert in the relevant 
technology and patent law, reviews the application and decides to allow or reject it.

After searching prior art and applying novelty and non-obviousness standards, the examiner 
can identify the legally allowable scope 𝑋 of the claimed invention. The examiner would like 
the claims to be as close as possible to 𝑋. The company prefers broader protection (a higher 𝑟), 
as broader claims raise expected licensing revenue and deter entry. When the firm submits its 
initial claims, the examiner may respond with guidance. In practice, patent examiners usually send 
back the application, laying out issues in the application and suggesting amendments (Lemley and 
Sampat, 2008).

In this context, my model highlights the importance of patent examiners’ expertise. Lemley 
and Sampat (2012) document significant variation in examiners’ expertise at the U.S. Patent and 
Trademark Office (USPTO). They find that experienced examiners are more likely to grant patents. 
My model suggests that this may be partly because an experienced examiner can effectively 
communicate with the applicant in the initial rejection, thereby ensuring an acceptable claim scope 
in the next round.
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